ARCHAEOLOGICAL
DESK BASED
ASSESSMENT

Land at Rowden Park
Chippenham
Wiltshire SN15 2NN

February 2014
Local Planning Authority: Wiltshire Council

Site centred at: ST 9142 7178

Author: Duncan Hawkins BA (Hons) MSc FSA MIfA

Report Status: FINAL

Issue Date: February 2014

CgMs Ref: DH/KB/16305
CONTENTS

Executive Summary
1.0 Introduction and Scope of Study
2.0 Development Plan Framework
3.0 Geology and Topography
4.0 Archaeological and Historical Background
5.0 Site Conditions and the Proposed Development
6.0 Conclusions and Recommendations

Sources Consulted

APPENDIX 1

Early Bronze Age Ring Ditches and Romano-British agriculture at Showell Farm, Chippenham. Excavations in 1999, R. Young and A. Hancocks

LIST OF ILLUSTRATIONS

Fig. 1 Site Location
Fig. 2 HER Plot
Fig. 3 Andrews & Drury Map of Kent, 1773
Fig. 4 Ordnance Survey, 1808
Fig. 5 Corsham Tithe Map, 1838
Fig. 6 Lacock Tithe Map, 1838
Fig. 7 Chippenham Tithe Map, 1844
Fig. 8 Ordnance Survey, 1885
Fig. 9 Ordnance Survey, 1901
Fig. 10 Ordnance Survey, 1926
Fig. 11 Ordnance Survey, 1938
Fig. 12 Ordnance Survey, 1960/61
Fig. 13 Ordnance Survey, 1985
Fig. 14 Ordnance Survey, 2013
Fig. 15 Illustrative Masterplan

LIST OF PLATES

Plate 1 Air Photograph, 1945
Plate 2 Google Earth, 1999
Plate 3 Google Earth, 2006
EXECUTIVE SUMMARY

- In view of the extent of previous archaeological work undertaken on the study site and the nature of the archaeological remains identified, it is suggested that all further archaeological mitigation measures could follow planning consent secured by an appropriately worded archaeological planning condition.
1.0 INTRODUCTION AND SCOPE OF STUDY

1.1 This archaeological desk-based assessment has been prepared by Duncan Hawkins of CgMs Consulting, on behalf of Crest Nicholson and Redcliffe Homes.

1.2 The subject of this assessment is land at Rowden Park, Chippenham, Wiltshire, SN15 2NN also referred to as the study site. The site is centred at ST 9142 7178 (Fig. 1).

1.3 Crest Nicholson and Redcliffe Homes have therefore commissioned CgMs Consulting to establish the archaeological potential of the site, and to provide a suitable mitigation strategy for any archaeological constraints identified.

1.4 In accordance with government guidance on archaeology and planning (NPPF) this assessment draws together the available archaeological, topographic and land-use information in order to clarify the archaeological potential of the site.

1.5 Additionally, in accordance with the ‘Standard and Guidance for Archaeological Desk-Based Assessments’ (Institute for Archaeologists 1999, revised 2011), the assessment comprises an examination of evidence in the Wiltshire Historic Environment Record (HER), considers the results of nearby archaeological investigations, incorporates published and unpublished material and charts historic land-use through a map regression exercise.

1.6 The Assessment thus enables relevant parties to assess the archaeological potential of various parts of the site and to consider the need for design, civil engineering, and archaeological solutions to the archaeological potential identified.
2.0 DEVELOPMENT PLAN FRAMEWORK

2.1 In March 2012, the government published the National Planning Policy Framework (NPPF), which replaces national policy relating to heritage and archaeology (PPS5: Planning Policy Statement 5: Planning for the Historic Environment). The Practice Guide which was issued with PPS5 is still valid however, and English Heritage have provided documentation translating former PPS5 policy into its NPPF counterpart.

2.2 Section 12 of the NPPF, entitled Conserving and Enhancing the Historic Environment provides guidance for planning authorities, property owners, developers and others on the conservation and investigation of heritage assets. Overall, the objectives of Section 12 of the NPPF can be summarised as seeking the:

- Delivery of sustainable development
- Understanding the wider social, cultural, economic and environmental benefits brought by the conservation of the historic environment
- Conservation of England’s heritage assets in a manner appropriate to their significance, and
- Recognition of the contribution that heritage assets make to our understanding of the past.

2.3 Section 12 of the NPPF recognises that intelligently managed change may sometimes be necessary if heritage assets are to be maintained for the long term. Paragraph 128 states that planning decisions should be based on the significance of the heritage asset, and that level of detail supplied by an applicant should be proportionate to the importance of the asset and should be no more than sufficient to review the potential impact of the proposal upon the significance of that asset.

2.4 Heritage Assets are defined in Annex 2 of the NPPF as: a building, monument, site, place, area or landscape positively identified as having a degree of significance meriting consideration in planning decisions. They include designated heritage assets (as defined in the NPPF) and assets identified by the local planning authority during the process of decision-making or through the plan-making process.

2.5 Annex 2 also defines Archaeological Interest as a heritage asset which holds or potentially could hold, evidence of past human activity worthy of expert investigation at some point. Heritage assets with archaeological interest are the primary source of evidence about the substance and evolution of places, and of the people and cultures that made them.
2.6 A **Designated Heritage Asset** comprises a: World Heritage Site, Scheduled Monument, Listed Building, Protected Wreck Site, Registered Park and Garden, Registered Battlefield or Conservation Area.

2.7 **Significance** is defined as: The value of a heritage asset to this and future generations because of its heritage interest. This interest may be archaeological, architectural, artistic or historic. Significance derives not only from a heritage asset’s physical presence, but also from its setting.

2.8 **Setting** is defined as: The surroundings in which a heritage asset is experienced. Its extent is not fixed and may change as the asset and its surroundings evolve. Elements of a setting may make a positive or negative contribution to the significance of an asset, may affect the ability to appreciate that significance or may be neutral.

2.9 In short, government policy provides a framework which:

- Protects nationally important designated Heritage Assets (which include World Heritage Sites, Scheduled Ancient Monuments, Listed Buildings, Protected Wreck Sites, Registered Parks and Gardens, Registered Battlefields or Conservation Areas)
- Protects the settings of such designations
- In appropriate circumstances seeks adequate information (from desk based assessment and field evaluation where necessary) to enable informed decisions
- Provides for the excavation and investigation of sites not significant enough to merit *in-situ* preservation.

2.10 In considering any planning application for development, the planning authority will be mindful of the framework set by government policy, in this instance the NPPF, by current Development Plan Policy and by other material considerations.

2.11 The local development plan policy framework is provided by the 'saved' policies within the North Wiltshire Local Plan (adopted June 2006). The policies relating to archaeology and the historic environment are set out below:

POLICY HE5 - SCHEDULED ANCIENT MONUMENTS AND NATIONALLY IMPORTANT FEATURES

PERMISSION WILL NOT BE GRANTED WHERE A PROPOSAL WOULD HAVE AN ADVERSE EFFECT ON A SCHEDULED ANCIENT MONUMENT OR OTHER NATIONALLY IMPORTANT FEATURE OF ARCHAEOLOGICAL OR HISTORIC INTEREST OR THEIR SETTING. THERE WILL BE A PRESUMPTION IN FAVOUR OF THE PHYSICAL PRESERVATION IN SITU OF NATIONALLY IMPORTANT ARCHAEOLOGICAL REMAINS AND THEIR SETTINGS, WHETHER THE SITE IS SCHEDULED OR NOT.
POLICY HE6 - LOCALLY IMPORTANT ARCHAEOLOGICAL SITES

DEVELOPMENT IN DEFINED AREAS OF SPECIAL ARCHAEOLOGICAL SIGNIFICANCE, OR IN OTHER LOCALLY IMPORTANT ARCHAEOLOGICAL SITES, WILL ONLY BE PERMITTED WHERE:

I) ANY ARCHAEOLOGICAL REMAINS WOULD BE UNAFFECTED BY THE PROPOSALS; OR

II) SATISFACTORY MEASURES ARE TAKEN TO ENSURE THE PHYSICAL PRESERVATION OF ANY ARCHAEOLOGICAL REMAINS IN SITU; OR

III) IN CASES WHERE THE SIGNIFICANCE OF ANY ARCHAEOLOGICAL REMAINS IS OUTWEIGHED BY THE NEED FOR AND BENEFITS OF THE DEVELOPMENT, SATISFACTORY MEASURES ARE TAKEN TO EXCAVATE AND RECORD THE SITE AND ITS REMAINS.

HE8 ARCHAEOLOGICAL EVALUATION

WHERE ANY NATIONALLY OR LOCALLY IMPORTANT ARCHAEOLOGICAL SITE OR HISTORIC BUILDING IS LIKELY TO BE AFFECTED, APPLICANTS WILL BE REQUESTED TO SUBMIT AN ARCHAEOLOGICAL EVALUATION BEFORE PLANNING PERMISSION IS GRANTED.

WHERE NECESSARY, ADEQUATE ARCHAEOLOGICAL INVESTIGATION AND RECORDING WILL BE REQUIRED BEFORE, AND / OR DURING, BUILDING OR OTHER OPERATIONS, IN ORDER TO SAFEGUARD IMPORTANT EVIDENCE WHICH MIGHT OTHERWISE BE DESTROYED WITHOUT RECORD.

2.12 The Wiltshire Core Strategy pre submission document (10.07.12) identifies the site as forming the ‘South West Chippenham Strategic Site’ for the development of 18ha of employment land and 800 houses and community uses.
3.0 GEOLOGY AND TOPOGRAPHY

Geology

3.1 The built area of the development extends in three ‘blocks’ from north to south (Fig. 1).

3.2 The northernmost part of the proposed built area of the site is principally underlain by Kellaways Formation – Sandstone, Siltstone and Mudstone.

3.3 The central part of the proposed built area of the site is principally underlain by River Terrace Deposits, 1 Sand and Gravel – overlying Kellaways Formation Sandstone, Siltstone and Mudstone.

3.4 The southern part of the proposed built area of the site is divided between Kellaways Formation – Sandstone, Siltstone and Mudstone on the north and Cornbrash Formation Limestone on the south.

3.5 On the east of the site, a riverside park is proposed extending to 111.8ha. This encompasses areas of Kellaways Formation Sandstone, Siltstone and Mudstone, River Terrace Deposits, 1 of sand and gravel and Holocene alluvium, associated with the River Avon comprising clay, silt, sand and gravel.

Topography

3.6 The study site is located in a landscape of minor valleys and rises. The northern proposed built part of the site with a high point of around 60m AOD is separated from the central proposed built part of the site by the miniature valley of the ‘Pudding Brook’ a south east flowing tributary of the Avon at around 50m AOD.

3.7 A notable rise at around 60m AOD is present on the north west of the central part of the site, while the remainder of this part of the site is broadly level at between 48m and 50m AOD crossed by east draining drainage ditches.

3.8 The south of the site has a small but notable rise on the centre west of around 55m AOD and steadily rises to the south from below 50m AOD to above 55m AOD.
4.0 ARCHAEOLOGICAL AND HISTORICAL BACKGROUND

Timescales used in this report:

Prehistoric
- Palaeolithic: 450,000 - 12,000 BC
- Mesolithic: 12,000 - 4,000 BC
- Neolithic: 4,000 - 1,800 BC
- Bronze Age: 1,800 - 600 BC
- Iron Age: 600 - AD 43

Historic
- Roman: AD 43 - 410
- Anglo Saxon/Early Medieval: AD 410 - 1066
- Medieval: AD 1066 - 1485
- Post Medieval: AD 1486 - 1749
- Modern: AD 1750 - Present

4.1 Introduction

4.1.1 The southern part of the site zoned for employment has been subject to an archaeological evaluation trial trenching exercise and subsequent programmes of archaeological excavation, post excavation and publication (Appendix 1). Also within the site red line boundary, archaeological investigations have been undertaken at Showell Nurseries. The results of this work can be used to characterise the potential archaeological remains in the remainder of the site. No further archaeological mitigation measures are thought to be required in the southern part of the site proposed for employment.

4.2 Palaeolithic and Mesolithic

4.2.1 The archaeological investigations on the southern part of the site proposed for employment recovered a single Mesolithic flint blade, seven Mesolithic bladelets and a possible fifteen flint blades or bladelets of potential Mesolithic Age (Appendix 1, p21-22). The excavators thought the Mesolithic component of the flint assemblage recovered may have been under-estimated (see also HER Ref: ST 97 SW 058, MW13650; SU 9083 7105).
4.2.2 Overall the archaeological potential of the study site for the Palaeolithic can reasonably be defined as low and for the Mesolithic as moderate to good. For the latter, the potential is perhaps specific for short term ‘Camp Site’ occupation (Appendix 1, p45).

4.3 Neolithic and Bronze Age

4.3.1 The archaeological investigations on the southern part of the site allocated for employment revealed evidence for late Neolithic and early Bronze Age activity in the form of two ring ditches (Appendix 1, p12-16), and widespread finds distribution (Appendix 1, p22, 23).

4.3.2 These ring ditches (one of which is more correctly described as penannular), are interpreted as funery or ritual (Appendix 1, p45) a view supported by their prominent position on a promontory overlooking the River Avon (Appendix 1, p45, see also HER Ref: ST 97SW156, MW13663; ST 9065 7133; ST 97 SW157, MW15219; SU 9059 7136). Nine ring ditches observed in this area in air photographs were not located in the archaeological investigations. The original interpretation of the air photographs is therefore thought to be an error (HER Ref: ST 97 SW615, MW15287; ST 9059 7128; HER Ref: ST 97SW616, MW15288, ST 9061 7127; HER Ref: ST 97 SW617, MW15289; ST 9065 7129; HER Ref: TW 97 SW618, MW15290, ST 9070 7136; HER Ref: ST 97 SW 619, MW15291, ST 9070 7134; HER Ref: ST 97 SW 620, MW 15292, 9072 7134, HER Ref: ST 97SW621, MW15293, ST 9074 7134; HER Ref: ST 97 SW622, MW 15294; ST 9074 7135; HER Ref: ST 97 SW623, MW 15295, ST 9075 7137).

4.3.3 A number of individual Neolithic and Bronze Age finds are listed in the Historic Environment Record (HER) within 500m of the study site boundary (HER Ref: EW17 192; Prehistoric flint, ST 9031 7165; HER Ref: ST97SW103, MW13654, late Neolithic pottery and flint from a curvilinear ditch at Showell Nurseries, ST 9135 7134; HER Ref: ST97 SW105, MW13656, Neolithic leaf shaped arrowing from southern part of the site allocated for employment use, ST 9066 7133.

4.3.4 Early Bronze Age finds including Beaker pottery were recorded during the archaeological investigation of the southern part of the site allocated for employment (HER Ref: ST 97SW152, MW13659, ST 9135 7134; HER Ref: ST 97SW153, MW13660, a poorly provenanced late Bronze Age dagger, ST 9170 7170; Bronze Age flint tools recorded during the archaeological investigation of the southern part of the site allocated for employment HER Ref: ST 97 SW 154, MW13661; ST 9077 7102, and HER Ref: ST 97 SW155, MW13662, ST 9082 7105. HER Ref: ST 97 SW552, MW15269, worked flint ST 9050 7107; HER Ref: ST 97 SW 553, MW15270, worked flint, ST 9086 7057; HER Ref: ST 97 SW612, MW15284, possible Prehistoric earthworks, ST 9041 7057).
Overall the study site can be assessed as having a variable archaeological potential for the Neolithic and Bronze Ages. Funery monuments and ritual enclosures may be represented on the higher ground on the southern and northern parts of the site. Elsewhere evidence for land division and agricultural activity may be represented.

4.4 **Iron Age and Roman**

4.4.1 The archaeological investigations of the southern part of the site allocated for employment revealed extensive late iron Age and Roman field systems and enclosures representing agricultural and horticultural activity. These field systems were modified with the deletion and addition of boundaries, trackways and agricultural structures such as corn drying ovens. A small number of cremation and inhumation burials were also represented (Appendix 1, p15, 17, 18, 19, 20 and 21). This agricultural activity appears to have terminated during the third century AD, perhaps replaced with a pastoral farming regime (see also HER Ref: ST 97 SW307, MW15228; ST 9064 7136). Very similar archaeological evidence was revealed during archaeological investigations at Showell Nurseries, partly within and partly east of the central part of the study site (HER Ref: ST 97 SW 200, MW 15220, an Iron Age ditch and pit, ST 9135 7134; HER Ref: ST97 SW302, MW15224, Roman agricultural activity spanning c.50-250AD, ST 9122 7125).

4.4.2 The balance of probability is that evidence of Iron Age and Roman agricultural activity of this type with occasional low status structures and burials will be represented across much, if not all of the study site.

4.4.3 Overall the study site can be defined as having a good archaeological potential for the Iron Age and Roman periods, though the archaeological remains likely to be represented will be of purely local importance.

4.5 **Anglo Saxon and Early Medieval**

4.5.1 No finds of these periods are recorded from any of the archaeological investigations undertaken within the study site, nor are any sites or finds of these periods recorded within 500m of the study site boundary.

4.5.2 Overall it is reasonable to identify a low archaeological potential at the study site for these periods.

4.6 **Late Medieval, Post Medieval and Modern**

4.6.1 During the late Medieval and early Post Medieval periods the study site would have lain in relatively remote agricultural land to the south of Chipenham. This is how the site is
4.6.2 The 1838 Corsham Tithe map (Fig. 5) records the site as comprising parts of:

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1116</td>
<td>Mead Meadow</td>
<td>Meadow</td>
</tr>
<tr>
<td>1117</td>
<td>Bourn Field</td>
<td>Arable</td>
</tr>
<tr>
<td>1115</td>
<td>-</td>
<td>Arable</td>
</tr>
<tr>
<td>1113</td>
<td>Great Field</td>
<td>Arable</td>
</tr>
<tr>
<td>1110</td>
<td>-</td>
<td>Arable</td>
</tr>
<tr>
<td>1111</td>
<td>-</td>
<td>Arable</td>
</tr>
<tr>
<td>1112</td>
<td>Meadow</td>
<td>Grass</td>
</tr>
</tbody>
</table>

4.6.3 The 1838 Lacock Tithe map (Fig. 6) records the site as comprising parts of:

<table>
<thead>
<tr>
<th>No</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>621</td>
<td>Arable</td>
</tr>
<tr>
<td>622</td>
<td>Grass</td>
</tr>
<tr>
<td>623</td>
<td>Arable</td>
</tr>
<tr>
<td>624</td>
<td>Arable</td>
</tr>
<tr>
<td>628</td>
<td>Arable</td>
</tr>
<tr>
<td>626</td>
<td>Meadow</td>
</tr>
</tbody>
</table>

4.6.4 The 1844 Chippenham Tithe map (Fig. 7) records the site as comprising parts of:

<table>
<thead>
<tr>
<th>No</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>465</td>
<td>Great Down</td>
</tr>
<tr>
<td></td>
<td>Arable</td>
</tr>
</tbody>
</table>

4.6.5 The Ordnance Survey map of 1885 (Fig. 8) shows the study site as comprising in general unremarkable agricultural land. All of the existing agricultural settlements bordering or surrounded by the proposed development site are shown. Subsequently, the study site has changed only in detail (Fig. 9 (1901), Fig. 10 (1926), Fig. 11 (1938), Fig. 12 (1960/61), Fig. 13 (1985), Fig. 14 (2013)).

4.6.6 Overall the archaeological potential of the study site for these periods can be defined as limited though evidence for land division and agricultural activity is likely to be represented.

5.0 SITE CONDITIONS & THE PROPOSED DEVELOPMENT
5.1 The study site comprises unremarkable agricultural and horticultural land to the south of Chippenham (Plates 1 to 3).

5.2 In general past archaeological impacts will relate to past ploughing. Archaeological investigations within the site suggest that moderate but widespread archaeological impacts can be anticipated across the site.

5.3 Two extensive archaeological investigations have been undertaken within the site. One on the south in the land allocation for employment and one on the east of the central block of proposed development land. In both cases these will have had a significant and widespread archaeological impact, through preservation by record and recording.

The Proposed Development

5.4 The proposed development is understood to comprise the following:

<table>
<thead>
<tr>
<th>Category</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>33.5 ha</td>
</tr>
<tr>
<td>Local Centre</td>
<td>0.6 ha</td>
</tr>
<tr>
<td>Employment inc. Road</td>
<td>17.7 ha</td>
</tr>
<tr>
<td>School</td>
<td>2.3 ha</td>
</tr>
<tr>
<td>Riverside Park</td>
<td>111.8 ha</td>
</tr>
<tr>
<td>Existing Forest Area</td>
<td>0.5 ha</td>
</tr>
</tbody>
</table>

5.5 Except in the area of the Riverside Park and the existing Forest Area the scale of the proposed development suggests it is unlikely that any archaeological remains present would survive the redevelopment process.

5.6 Within the Riverside Park and the existing Forest Area there is a potential to preserve any archaeological remains present in situ.
6.0 SUMMARY AND CONCLUSIONS

6.1 Land at Rowden Park, Chippenham, Wiltshire SN15 2NN, centered at ST 9142 7178 is proposed for redevelopment.

6.2 The study site is thought to have a low archaeological potential for the Palaeolithic.

6.3 The study site has a moderate to good archaeological potential for the Mesolithic with short term ‘camp site’ occupation most likely to be represented.

6.4 The study site can be assessed as having a variable archaeological potential for the Neolithic and Bronze Ages. Funery monuments and ritual enclosures may be represented on the higher ground on the southern and northern parts of the site. Elsewhere evidence for land division and agricultural activity may be represented.

6.5 Low status Iron Age and Roman agricultural activity, with occasional associated agricultural structures and low status burials are likely to be represented across the site.

6.6 The study site has a low archaeological potential for the Anglo Saxon and early Medieval periods and a limited archaeological potential for the late Medieval, post Medieval and Modern periods, though evidence for land division and agricultural activity may be represented.

6.7 The southern part of the site allocated for employment use has been subject to a comprehensive archaeological investigation as has the eastern part of the central development area.

6.8 Past archaeological impacts are likely to have been restricted to ploughing, with moderate but widespread archaeological impacts.

6.9 Except in the area of the Riverside Park and the existing Forest area the scale of the proposed development suggests it is unlikely that any archaeological remains present would survive the redevelopment process.

6.10 Within the Riverside Park and the existing Forest area, there is a potential to preserve any archaeological remains present in situ.

6.11 In view of the extent of previous archaeological work undertaken on the study site and the nature of the archaeological remains identified, it is suggested that all further
archaeological mitigation measures could follow planning consent secured by an appropriately worded archaeological planning condition.
ARCHAEOLOGICAL DESK BASED ASSESSMENT

Lands at Rowden Park, Chippenham, Wiltshire SN15 2NN

SOURCES CONSULTED

General

British Library

Wiltshire Historic Environment Record

Cartographic

Andrews & Drury Map of Kent, 1773

Ordnance Survey, 1808

Corsham Tithe Map, 1838

Lacock Tithe Map, 1838

Chippenham Tithe Map, 1844

Ordnance Survey, 1885

Ordnance Survey, 1901

Ordnance Survey, 1926

Ordnance Survey, 1938

Ordnance Survey, 1960/61

Ordnance Survey, 1985

Ordnance Survey, 2013

Air Photograph, 1945

Google Earth, 1999

Google Earth, 2006
Figure 3: Andrews and Dury, 1773
Figure 4: Ordnance Survey, 1808

© Ordnance Survey maps reproduced with the sanction of the controller of HM Stationery Office License No: AL 100147/23

Site Boundary
Figure 6:
Lacock Tithe Map, 1838
Figure 7: Chippenham Tithe Map, 1844
Figure 8:
Ordnance Survey, 1885

© Ordnance Survey maps reproduced with the sanction of the controller of HM Stationery Office License No: AL 10014723

Site Boundary

Not to Scale:
Illustrative Only
Figure 10: Ordnance Survey, 1926
Figure 13: Ordnance Survey, 1985
Figure 14:
Ordnance Survey, 2013
Plate 2: Google Earth, 1999
APPENDIX 1

Early Bronze Age Ring Ditches and Romano-British agriculture at Showell Farm, Chippenham.

Excavations in 1999, R. Young and A. Hancocks
Early Bronze Age ring ditches and Romano-British agriculture at Showell Farm, Chippenham. Excavations in 1999

by Richard Young and Annette Hancocks

INTRODUCTION

Project and archaeological background (Figure 1)

From July to September 1999 Cotswold Archaeology (then Cotswold Archaeological Trust) carried out an archaeological excavation for Crest Nicholson Properties, now Nicholson Estates, at Showell Farm, Chippenham, Wiltshire (centred on NGR: ST 907 712; Figure 1). The excavation was undertaken in anticipation of construction of a new business park.

An Environmental Statement which accompanied the planning application included a cultural heritage assessment comprising two elements. The first, a desk-based assessment (CAT 1998; DPDS 1998), concluded that no previously recorded archaeological sites existed within the boundary of the site, although there was evidence for archaeological activity in its immediate environs. Flint assemblages testify to Mesolithic, Neolithic, and Early Bronze Age activity just beyond the limits of the site, primarily along the route of the new Chippenham bypass (Bateman and Enright 2000). During investigations around Showell Nurseries, to the east of Showell Farm, cut features of the above dates were also identified (OAU 1991; Anon 1993). Late Neolithic/Early Bronze Age activity at Showell Nurseries included pits, postholes, ditches and gullies. One pit contained Beaker pottery. Roman activity previously identified from cropmarks took the form of trackways, boundary ditches and gullies with domestic debris including pottery and animal bone dated principally to the late 1st to 2nd century AD (Anon 1993, 160). The results of the desk-based assessment prompted the Local Planning Authority to require a field evaluation comprising 30 trial trenches to determine the presence or absence of archaeological deposits within the proposed development area (Figure 1). Many of the evaluation trenches were devoid of archaeological evidence, but in the northern part of the site linear features of Roman date, together with a Bronze Age gully, were encountered (Figure 3, trenches 20, 29 and 30).

Topography and geology

The proposed development site comprised c. 25ha
SHOWELL FARM, CHIPPENHAM. EXCAVATIONS IN 1999

Fig. 1. Site location plan (1:7500)
of pasture to the south of Chippenham, immediately east of the London to Bristol railway line. The northern and eastern boundaries of the site were formed by the Chippenham to Lacock road, with the south-western boundary defined by the A350 Chippenham bypass. The ground slopes very gently towards the road to the east, although the north-eastern part of the site lies on a gentle rise at approximately 54-55m above OD overlooking the river Avon to the east and one of its tributaries, the Pudding Brook, to the north. The underlying geology across the southern half of the site is mapped as Cornbrash, with Kellaways Clay to the north (BGS 1990 and Figure 1).

Excavation Methodology

The Environmental Statement recommended that the area of principal archaeological interest be excavated prior to development. Crest Nicholson commissioned CA to undertake the excavation whilst the planning application was being considered by West Wiltshire District Council. In the event, and following completion of the fieldwork, planning permission was refused at Public Inquiry.

Fieldwork focussed on two areas of archaeological interest identified from the evaluation (Figure 1). Area A was c. 120m by 80m where a flint scatter had been identified. Area B represented the site of a probable Romano-British farmstead occupying the higher land above the river Avon. Area C lay in different ownership and had not been surveyed in the first phase of work, but was evaluated by excavation of a further four trial trenches, 50m long by 1.5m wide, to clarify the extent of archaeological deposits on the site.

Within Area A, a series of 1m² test pits was hand excavated on a 25m grid across an area measuring 120m by 80m, including both of the recognised lithic scatters and their immediate surrounds. The test pits were excavated down to the underlying limestone brash at a depth of 0.25m. A 20% sample of material from each test pit was hand sieved on site through a 10mm mesh.

In Area B, topsoil, subsoil and colluvium were stripped under archaeological supervision using tracked excavators with toothless ditching buckets. The evaluation had demonstrated that archaeological features only survived where they had been cut into the surface of the natural clay. The examination of features concentrated on recovering the overall plan, stratigraphic sequence, and the collection of an adequate sample of dateable finds. Archaeological deposits were sampled by hand excavation to the following levels: burials and cremations 100%; pits, postholes and other non-linear features 50% minimum; whilst linear features such as ditches and gullies had a maximum of 10% excavated (Figure 3).

EXCAVATION RESULTS
(Figures 2-7)

Area A

No archaeological features were identified during the excavation of the 28 test-pits located in Area A. A total of 37 worked flints was recovered as a result of hand sieving topsoil excavated within the test-pits.

Area B

Archaeological deposits in the north-western half of Area B were covered by up to 0.5m of topsoil and colluvium and did not appear to have been significantly truncated. Features in the south-eastern half of the site lay on a slight rise covered by between 0.25m and 0.35m of topsoil and subsoil. The depth of several linear features diminished by c. 0.2m from the north-west to the south-east parts of the trench demonstrating greater truncation on the slope. Dateable features fell into two periods. Other features produced no artefactual material or had no stratigraphic relationships with dateable features, but may be related by their form and location with features that yielded artefacts. The two periods were:

Period 1: Early Bronze Age (2460 BC – 2030 BC)
Period 2: Early Roman (Mid 1st century to later 2nd/early 3rd century AD)

Period 1: Early Bronze Age; Figures 2 and 4

Two ring ditches were identified, 63m apart. Ring ditch 1 was shallow (maximum depth 0.1m) with an internal diameter of c. 10.5m. The ditch was not perfectly circular, with its western side markedly flattened. No internal features were identified. The ditch was generally U-shaped with a narrow, concave base and a north-east facing entrance 1.3m wide, with rounded terminals. The ditch was filled with silty sand. Early Bronze Age beaker-type pottery was recovered from the primary fill of ring ditch 1 (Figure 9.1 and 9.2) as was a broken Neolithic leaf-shaped arrowhead (Figure 8.2). An environmental
Fig. 2 Plan of site showing the location of cropmarks (1:2500)
Fig. 3 Feature plan for Area B and evaluation trenches in Area C (1:1250)
sample <43>, taken from the unexcavated primary fill of ring ditch 1, contained a human heel bone. A single hazelnut shell and hulled barley from the primary fill of ring ditch 1 were sent for radiocarbon dating.

Ring ditch 2 was heavily truncated with an internal diameter of c. 7m. The ditch appeared to have been recut once and had a relatively steep profile with a predominantly flat base. The ditch produced no dating evidence although it had been cut by a Roman fence line. The north-eastern portion of this feature survived to a maximum depth of 0.21m, whilst to the south-west it was much shallower (0.07 and 0.04m). No internal features were identified. The colluvium that sealed the ring ditch and the fence line contained a barbed and tanged flint arrowhead (Figure 8.4) amongst post-medieval finds.

Dating Evidence

Two radiocarbon dates were obtained, from a fragment of hazelnut shell (Wk-15448: 2460-2140 cal BC) and a hulled barley seed (Wk-15449: 2300-2030 cal BC) from the primary fill of ring ditch 1, while two Beaker fineware sherds (Figure 9.1 and 9.2) were recovered from the ditch. Together these suggest a late 3rd millennium BC date for ring ditch 1. Two unstratified barbed and tanged arrowheads and a single small unstratified ‘thumbnail’ scraper are characteristic of the 3rd millennium BC too (Figure 8.4 and 11.5) and could be contemporary with ring ditch 1. A further three flints exhibit characteristics of Early Bronze Age date and a broken leaf-shaped arrowhead is likely to be a residual Early-Middle Neolithic item.

Period 2: Early Roman; Figure 5

The Early Roman activity sub-divided into five phases (a-e) based on stratigraphic relationships, form and distribution of features, fill characteristics, ceramic evidence and the analysis of other categories of artefactual material.

Phase 2a c. AD 50-140/150

Parallel gullies (1, 2 and 3) were aligned north-east to south-west. Their southern terminals were rounded whilst their northern ends lay outside the excavation area. Gullies 2 and 3 lay 11m and 14m to the north-west of gully 1 respectively. Gully 1 had been recut at its southern end. Two further gullies (4 and 5) lay at right angles to this alignment, with similarly rounded south-eastern terminals. The north-western end of gully 4 was truncated and the north-western terminal of gully 5 lay outside the excavation area. The form of gully 4 would indicate that it was constructed in two phases, with its south-eastern half being an extension to the original feature. All gullies were up to 1m wide with shallow u-shaped profiles and sandy clay fills. Gully 3 was cut by gully 4. The function of these gullies is unclear, but the regular layout of nos. 1 to 5 suggests that they were used as boundary markers, possibly to separate small agricultural plots. The spatial relationship of gullies 2 and 3, and the stratigraphic relationship between gullies 3 and 4, suggest two phases of construction. It is possible that gully 1 defined the eastern edge of a trackway, with gullies 2 and 3 forming successive western edges. If this is the case the south-eastern extension to gully 4 may have been dug after this trackway went out of use. Equally it might represent an alteration to the trackway, which allied with the gap in gully 3 to the north-east, defined a new right-angled course to the north-west.

A number of other features have been ascribed to Phase 2a. The majority are less regular gullies, although there are several large pits and one grave. The gullies either shared a common alignment with gullies 1 to 5 or else were cut by later features. The distribution of these features suggested that the agricultural plots originally extended across much of the excavation area, but that their remains have been lost through later truncation to the south-west and south-east. The fill of pit 456 produced large quantities of charcoal, burnt bone, a few emmer/spelt wheat grains, a chaff fragment and several weed seeds.

Immediately east of ditch 5 lay a heavily truncated, crouched burial (Grave 1) of an adult, although the sex could not be determined. A radiocarbon date was obtained on a sample of the left tibia from this burial that yielded an AMS date of Wk-15450: 170 cal BC to 60 cal AD, a Late Iron Age or Early Roman date (Table 8).

Phase 2b c. AD 50-140/150

A further three linear features (6, 7 and 8) are ascribed to Phase 2b because they cut Phase 2a features and had different forms and alignments. Gully 6 was aligned north/south and cut gully 4. It was up to 1m wide and may have been recut once at its mid point. Fences 7 and 8 differed from the Phase 2a gullies in that they were shorter, deeper and steeper-sided; 6m and 3.3m long respectively, with a maximum width of 0.75m and filled with sandy clay. The differing alignment of linear features 6 to 8 suggests that they were not part of the Phase 2a system of plot division.
Fig. 4 Area B, phase 1, ring ditch 1, plan and representative section (1:100 and 1:10)
Dating Evidence
Four residual Iron Age sherds were recovered and grave 1 was radiocarbon dated to the Late Iron Age/Early Roman period (170 cal BC to 60 cal AD) suggesting an element of Iron Age activity in the vicinity.

For the Romano-British phases of the site a series of key groups has been defined on the basis of their stratigraphic integrity, size and level of completeness. Dating each phase of activity has been determined by reference to pottery finds, but incorporating information from other artefact classes where appropriate. The overall date-span of the assemblage is narrow.

Phase 2a/b
Dating this phase to c. AD 50-140/50 is suggested largely by coarsewares (see pottery report). The virtual absence of Late Iron Age and Late pre-Roman Iron Age or Early Roman ‘Belgic’ type wares is significant and a key factor in suggesting a post-Conquest date. Coarsewares are instead dominated by ‘Romanised’ reduced sandy coarsewares and Savernake type wares which, on the basis of their occurrence at Cirencester, date to before c. 140/50 (Rigby 1982, nos 193-197). Limited support for such a date is provided by dateable non-ceramic finds from Phase 2a/b, which include a hinged iron brooch, almost certainly pre-Flavian in date (Figure 11.2), and a mould-blown glass fragment from gully 4 (Glass catalogue no. 1), dated to the third quarter of the 1st century AD. Samian from phase 2a/b (5 sherds) consists mainly of South Gaulish material of Flavian date.

Phase 2c c. AD 140/150-200/210 (Figure 6)
Ditch 1, aligned north-east/south-west, cut across three of the Phase 2a gullies (3, 4, 6) and Phase 2b gully 6 and fence 7. Ditch 1 had a rounded southern terminal, whilst its northern end lay outside the excavation area. Ditch 1 with its sandy clay fill appeared to have been recut and had a maximum width of 2.3m. A number of pits and postholes immediately to the north-west may represent activity within an enclosure partially demarked by the ditch. Posthole 270 produced the highest concentration of charred plant remains from the twenty samples taken on the site, with a ratio of grain to chaff to weed seeds of 1:3:3 indicating cereal processing waste.

Dating Evidence
Dating is derived primarily from pottery, particularly the samian which includes Antonine forms as well as residual Flavian material (see pottery report). Elements within the coarsewares supportive of such a date include a large number of bag-shaped beakers of likely Antonine date and Black-Burnished ware or BB1 influenced forms dating to before c. AD 225. Non-ceramic finds include a coin of Domitian (AD 81-96; catalogue 1) and a brooch of Polden Hill form (catalogue no. 5), each of which would appear to be residual in its respective context.

Phase 2d (Figures 6 and 7)
This phase is characterised by the laying out of a field system with a trackway on a common alignment. Trackway 1 was defined by three ditches 2, 3 and 4, much more substantial than the Phase 2a and 2b gullies, being up to 2.5m wide and 0.8m deep, and regular in form with a straighter alignment than the Phase 2c ditch (see Figure 6). The trackway ran east-west across the whole excavation area. In the western and central portions of the site, the trackway was defined by the parallel ditches 2 and 3, approximately 8m apart at the western edge of Area B. Towards the eastern edge of the excavation area, ditch 2 turned 90° to run northwards, where it was intersected by ditch 4, which formed the northern boundary of the trackway from this point. At the eastern edge of the excavation area, the trackway had widened to 18m. The relationship between ditches 2 and 4 was not defined and is entirely possible that the two are contemporary and that trackway 1 as originally conceived ran right across the excavation area. Equally, however, ditch 4 can be interpreted as a later addition to the system that formed an extension to the original trackway. If this was the case it is possible that ditches 3 and 5 originally mirrored the layout of ditch 2, and that ditch 3 was extended to the south-east at the same time as ditch 4. The land to either side of the trackway was sub-divided by ditches 6, 7, 8 and 10.

Within the field system some discrete features were identified, including drying oven 1, well 1, and a number of gullies and shallow pits. Drying oven 1 lay to the south of trackway 1 and was T-shaped with a stoking area, a main flue and a cross flue (Figure 7). The base of the structure was formed of limestone slabs, many of which exhibited signs of scorching. The base of the stoking area had been renewed once. Although no superstructure survived, a substantial deposit of clay overlying the feature to a depth of c. 0.14m might indicate that the oven was originally capped by a clay roof. Charred plant remains, samples <16> and <17> from the north-western end of the flue, consisted of 99% and
Fig. 5 Area B, Plan showing phases 2a and 2b (1:750)
Fig. 6 Area B, Plan showing phases 2c to 2e (1:750)
98% grain respectively. The few identifiable grains were almost equally emmer/spelt wheat and barley. By contrast, samples <20-3> recovered from the stoking area contained a much higher concentration of chaff than grain, suggesting that cereal processing waste was used as fuel.

Well 1 was located in the northern corner of the excavation area, in the south-eastern corner of an enclosure formed by ditches 7 and 8. The well was cut 1.6m deep into the bedrock, with an oval top 3.2m by 2.5m and a sub-circular shaft with a maximum diameter of 2m. The well was filled with a mixture of clay cornbrash, suggesting deliberate backfilling. There was no evidence of a well lining.

One inhumation and two cremations were found. Grave 2 was found to the north of well 1, disturbed with only the skull, arms and right femur surviving. This extended burial appeared to be of a young adult/adult male. A radiocarbon date could not be determined on the sample of bone submitted. Cremations 1 and 2 consisted of cremated bone and pyre debris buried in shallow, sub-circular pits, located 2.5m apart to the north of the Phase 2c, ditch 1. All three burials are undated and it is possible that they are Iron Age or Early Roman in date as grave 1.
Phase 2e

The final Phase of Roman activity is the addition of a second trackway to the Phase 2d field system. Trackway 2 ran northwards from trackway 1 and was defined by Phase 2d ditch 8, and ditch 9 that had been newly dug to the west. Ditch 9 cut the Phase 2d east/west ditch 7. Although no evidence for the infilling of the portion of ditch 2 that separated the two trackways was observed, it would seem likely that this had occurred in relation to trackway 1, otherwise trackway 2 would have been a dead-end.

During this phase a waterhole was dug immediately to the west of ditch 9, perhaps to replace well 1, which now lay within trackway 2 and is likely to have gone out of use at this time. This feature measured 4.6m by 3.9m, but was not fully excavated due to flooding, although it was at least 1.5m deep.

Dating evidence

Phase 2d/e: c. AD 150/60-200/210

Phase 2d/e could not be separated on the basis of the artefactual material from Phase 2c. Samian is largely unhelpful, comprising residual South Gaulish material and scraps of broadly 2nd century dateable Central Gaulish vessels. The appearance for the first time of small quantities of mortaria and amphora fabrics might be seen as significant, although a cut-off point for all Phase 2 material of c. AD 240 is evident from the absence of common Late Roman ware types such as Oxfordshire colour-coated ware and distinctively late forms in Black-Burnished ware such as flanged bowls. Two brooches from ditch 7, of trumpet-headed (Figure 12.6) and enamelled ‘knee’ type (Figure 12.7), probably date to the first half of the 2nd century AD.

Area C (Figure 3)

Archaeological features were found in two of the four evaluation trenches. In trench 1 seven features, five of which contained pottery of Roman date, were found. These included a ditch 1008/1010, the fill of which produced 50 sherds of 2nd-century AD date, 30 animal bones and 3 fired clay fragments. This ditch was cut by pit 1012 and gully 1006, dated to the 2nd century AD. Gully 1006 was on the same alignment as a further gully 1020 and ditch 1004. Gully 1020 lay c. 11m to the north-west of gully 1006 and was of similar dimensions. The alignment of these gullies and the distances between them are similar to the properties of gullies 1, 2 and 3 in Area B, which may mean that the Phase 2a agricultural plots defined by these gullies continued into Area C. In all, 41 sherds of 2nd-century AD date were recovered from the fill of ditch 1004, along with 2 fired clay fragments. The remaining features in Trench 1 consisted of a north/south aligned gully 1018 and pit 1014 (not illustrated). Five sherds of 2nd-century AD date were recovered from the fill of the latter.

Six archaeological features were uncovered in trench 2. Crossing the trench on a north-east/south-west alignment was ditch 2008. The fill (2007) of this ditch contained South-West White-Slipped ware mortaria of hammer-head and flanged rim forms of late 2nd to early 3rd-century date. The ditch was adjacent to and on the same alignment as a possible ditch terminal 2006. A single shallow posthole 2010 was apparent to the north-east of these two ditches. A further four postholes 2012, 2004, 2014 and 2016, on a linear arrangement, were apparent to the south-west.

THE FINDS

by E.R. McSloy

Flint

A total of 110 pieces of worked flint was recovered from evaluation and excavation. Pieces with secondary working amount to 16.4% of the group (Table 1). The bulk of the assemblage comprises flakes or blades, ‘shatter pieces’ and cores.

The lithic material includes 37 pieces recovered as a result of sieving spoil through a 10mm mesh from 28 test pits in Area A (Table 1). A further 24 pieces are unstratified. The remaining 49, pieces or 44.5%, derive from hand excavated features mostly of Roman date. Four pieces, comprising unretouched flakes and a (residual) broken leaf-shaped arrowhead, are associated with Early Bronze Age Period 1 features.

The material is largely in good or fair condition with very little edge damage or heavy ‘rolling’ evident. The unstratified material by contrast is poorly preserved. Blades or bladelets have suffered breakage and most pieces exhibit moderate edge damage. Patination, the discolouration of flint as the result of burial in a calcareous environment, was noted on a majority of pieces (57%). The discolouration varies from a light milky or yellowish mottling to a deep white.

Material of likely Mesolithic date comprises a
single obliquely-blunted blade (Figure 8.1) and seven bladelets, including broken pieces. Additionally, a further 15 blades or blade fragments probably date to this period or to the earlier Neolithic. A proportion of the flakes and undiagnostic scrapers may also be of this date.

A single broken leaf-shaped arrowhead (Figure 8.2) and some blades probably date to the earlier part of the Neolithic. A broken, bi-facially worked tool (Figure 8.3) may represent a second leaf-shaped arrowhead. Alternatively, it may be from an ‘ovate’ form of knife dateable to the Neolithic or Early Bronze Age.

The bulk of the flake debitage exhibits characteristics typical for the Late Neolithic and subsequent periods. Cores are multi-platform types and flake removals are for the most part of ‘squat’ proportions with length to breadth ratios close to 1:1. Striking platforms are mostly thick and most exhibit the pronounced bulb and other characteristics suggestive of ‘hard hammer’ percussion. Scrapers, retouched flakes and the piercer may date to this period or the Bronze Age.

Barbed and tanged and tanged arrowheads (Figure 8.4 and Figure 8.5) and a single small ‘thumbnail’ scraper are characteristic of the Early Bronze Age period. A further three pieces, a scraper/knife, a domed discoidal scraper and a retouched flake exhibit shallow invasive retouch, often a characteristic of Beaker, lithic groups (Gibson 1982). A proportion of the debitage, cores and tools, which can be indistinguishable on typological or technological grounds from late Neolithic material, will almost certainly relate to this period.

Discussion

Mesolithic activity previously alluded to in the area (Walker 2000, 236) is evidenced by this group. A significant proportion of the probable Mesolithic component (8 pieces or approx 22%) including bladelets and an obliquely-blunted blade (flint cat. 1) was recovered from sieving of topsoil from the test pits. No sieving was undertaken of general excavated feature fills and the Mesolithic component may be underestimated as a result.

The bulk of the worked flint dates to the Late Neolithic or Early Bronze Age and would seem to be associated with Beaker activity on the site indicated by pottery finds. So little Beaker material is dated nationally that this group associated with a radiocarbon dates is very useful, although the assemblage is not large and very little worked flint is stratified. Retouched pieces are well represented and, if this is not as the result of a collection bias, may be indicative of domestic use of the site.
Table 1: Worked flint summary

<table>
<thead>
<tr>
<th>Area</th>
<th>Phase</th>
<th>Cores</th>
<th>Flakes</th>
<th>Blades</th>
<th>Tools</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unph. (test pits)</td>
<td>4</td>
<td>24</td>
<td>7</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2a/b</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2c</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2d</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Unph.</td>
<td>2</td>
<td>16</td>
<td>7</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>2a/b</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2d</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Illustrated pieces (Figure 8)

3. Unstratified. Broken leaf-shaped core tool on unpatinated black flint. Bi-facially worked with invasive retouch. May represent a large arrowhead Green types 1a/b (Green 1980, fig. 26 and 27), or an ovate/laurel leaf knife. Surviving length 33mm, width 35mm.

Pottery

Beaker pottery

Four sherds, representing four individual vessels, weighing 62g were recovered. Fabric codes following the nomenclature of the PCRG (1997).

Beaker Fineware – fine grog-tempered type (GR1 BKF)

Handmade. Dark reddish brown surfaces and dark grey core. Fabric is hard with soapy feel and finely irregular fracture. Inclusions are well sorted, comprising medium (0.5-1mm) red-brown grog, sparse fine (0.1-0.3mm) colourless sub-angular quartz and sparse medium (0.3-0.5mm) angular calcined flint.

Beaker Coarseware – coarser grog-tempered type (GR2 BKC)

Handmade. Mid or light reddish brown outer surfaces and dark grey core. Fabric is soft with a soapy feel and irregular fracture. Inclusions are poorly sorted, comprising coarse (1-2mm) sub-rounded dark grey or brown grog and sparse voids from burnt-out organic inclusions.

Two Beaker fineware sherds (Figure 9.1 and 9.2) were recovered. The incomplete nature of the sherds prevents classification. The style of decoration, however, is consistent with Case’s (1993, 260-3) regional group D, for southern Britain, which essentially comprises his Style 2 Beakers (Case 1977). Successive bands of combing on sherd no. 2 in particular have affinities with other vessels from the region, including Berwick St John (Case 1993, fig. 16, no. 7) and Downton, Wilts (ibid, fig. 18, nos. 1-7).

The unstratified sherd comes from a large coarseware vessel (Figure 9.3). The rusticated paired fingernail impression decoration is typical for such vessels and characteristic of Beaker domestic assemblages (Gibson 1982). Beaker coarsewares are also known among Case’s (Case 1993, 262) Group D assemblages and include crow’s foot type fingernail-decorated vessels. The fourth sherd (not illustrated) is an undecorated base sherd identified on the basis of fabric alone, which was residual within Waterhole 1 along with Iron Age pottery.

Illustration catalogue (Figure 9)

1. GR1 BKF. Ring ditch 1. Period 1. Fineware body sherd with three lines of square-toothed comb impressions probably forming border between decorated panels. Thickness 5mm.

2. GR1 BKF. Ring ditch 1. Period 1. Fineware body sherd. Three rows of oblique square-toothed comb impressions arranged in herringbone fashion. Thickness 6mm.

Iron Age Pottery

Four handmade body sherds of quartz or organic-tempered fabrics are distinctly Iron Age as they are not like the wheelmade early Roman fabrics of Period 2. Diagnostic features of fabric or form are absent, precluding closer dating. All sherds are residual within Period 2 features.

Quartz-tempered (QU)

Handmade. Dark grey/black throughout or with reddish brown surfaces. Fabric is soft with a sandy or harsh feel and a finely irregular fracture. Inclusions are well-sorted, comprising fine/medium (0.2-0.3mm) colourless sub-angular quartz and sparse, sub-rounded red-brown clay pellet or grog (0.3-0.5mm).

Organic-tempered (ORG)

Handmade. Dark grey/black throughout. Fabric is soft with a soapy feel and a finely laminated fabric. No mineral
Fig. 9 Prehistoric and Romano-British pottery (scale 1:3 and 1:4)
inclusions visible. Abundant linear voids from burnt-out organic inclusions.

Roman Pottery

with samian identifications by G.B. Dannell and description of Wiltshire imitation samian by Robert Hopkins

A total of 5047 sherds of Roman pottery, weighing 42.42kg was recovered from 218 separate contexts. Minimum vessel count, calculated by quantifying sherd families, is 3313 and total estimated vessel equivalence (rim and base EVEs) is 62.68.

The Roman pottery was quantified according to sherd count, minimum vessel count (sherd families), rim and base EVEs and weight per fabric. Fabrics were identified macroscopically or with the use of a (x4) hand lens and matched, wherever possible, against the National Roman Fabric Reference Collection (Tomber and Dore 1998). Table 2 summarises the quantities of all represented types. Attributes such as decoration use wear evidence, visible residues and any cross-context matches are recorded for each sherd family. Vessel form was recorded using a system of mnemonic codes which relate to the generic form class, jar, bowl, beaker etc, and specific elements, mostly based on rim morphology which are explained in detail in the archive.

Illustrated pieces emphasise forms which appear to be characteristic of the local (North Wiltshire) pottery industry. The Roman material extends from c. AD 50 to no later than the first quarter of the 3rd century, with perhaps an emphasis on the middle years of the 2nd century AD.

Poor surface preservation is a characteristic of this assemblage, most likely the result of burial environment. A small number of vessels are sufficiently complete for reconstruction of profile. Average sherd weight is low for a Romano-British group at 8.4g and suggestive of a well broken-up, dispersed assemblage. High levels of fragmentation may be an effect of the pattern of recovery which is characterised by retrieval from linear features (74% by sherd count). Only a small proportion of the pottery derived from pits or other discrete features might reasonably be expected to produce groups deposited over a short period of time. Truncation of the site overall has ensured that there is no horizontal stratigraphy surviving and all pottery is from negative features.

The low average sherd weight suggests a gradual build-up of domestic detritus as the result of agricultural processes and the movement of people and livestock. More structured, single event rubbish disposal within the larger ditch fills may also be indicated in some instances. Convincing evidence for this survives from the recovery of certain groups of pottery which are discrete in terms of date, containing con-joining sherds or even substantially complete vessels. The occurrence of such groups and the overall quantity of pottery from the site are a likely indication that the main areas of domestic activity were not far from the area of excavation.

Few comparable published assemblages are known from the immediate area, although a small assemblage was recovered from excavations along the course of the Littleton Drew to Chippenham gas pipeline (Timby 2000, 94-5) and Malmesbury villa (McCloy 2004). This material exhibits a similar range of ware types, dominated by material from the Wiltshire industries. More useful for comparison are the expansive, predominantly north-Wiltshire based coarseware assemblages from Cirencester (Rigby 1982a; Rigby 1982b) and Wanborough (Seagar Smith 2001).

Fabrics

Fabric descriptions are detailed in the site archive and follow methodologies employed for the National Roman Fabric Reference Collection (NRFRC; Tomber and Dore 1998). NRFRC codes are used where applicable. Represented forms are indicated in quantitative order.

Local, grogged

- Savernake ware (SAV GT); Tomber and Dore (1998, 191).
- Soft grog-tempered fabric ?Local or Savernake variant (GR)
- Grog with quartz ?Savernake variant (QZ GR)
- Coarse grog with quartz ?Savernake variant (GR QZ)
- Grog with coarse flint ?Savernake variant (GR FL)
- Pale grey grog and organic tempered ware ?Savernake variant (GR CH)

Local reduced

- Common greyware fabric (WIL GW)
- Grey throughout fabric (WIL GW1)
- Coarse greyware fabric (WIL GW2)
- Dense, gritty greyware fabric (WIL GW3)
 - ‘Dense’ Greyware with oxidised (colour-washed) surfaces (WIL GW5)
- Greyware with coarse chalk inclusions (WIL GW6)
 - ‘Dense’ Greyware with external white slip (WIL GW7)

Fine greyware (GW F)

- Fine greyware with orange margins (WIL B5)
- Black sandy fabric, usually burnished (WIL BS)
Table 2: Roman pottery. Quantification by fabric. † indicates NRFRC code used (Tomber and Dore 1998)

<table>
<thead>
<tr>
<th>Group</th>
<th>Fabric</th>
<th>Count</th>
<th>Vessel No.</th>
<th>Weight(g)</th>
<th>EVEs</th>
<th>%EVEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imports</td>
<td>BAT AM†</td>
<td>1</td>
<td>1</td>
<td>302</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEZ SA2†</td>
<td>30</td>
<td>25</td>
<td>344</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LGF SA†</td>
<td>37</td>
<td>37</td>
<td>285</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>68</td>
<td>63</td>
<td>931</td>
<td>3.44</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grog</td>
<td>SAV GT†</td>
<td>428</td>
<td>301</td>
<td>13433</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR</td>
<td>47</td>
<td>30</td>
<td>1074</td>
<td>.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR F</td>
<td>4</td>
<td>4</td>
<td>113</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR Q</td>
<td>17</td>
<td>12</td>
<td>807</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL GW4</td>
<td>52</td>
<td>34</td>
<td>855</td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>548</td>
<td>381</td>
<td>16282</td>
<td>5.55</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>WIL B1</td>
<td>220</td>
<td>98</td>
<td>1226</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL B3</td>
<td>24</td>
<td>17</td>
<td>289</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL B4</td>
<td>18</td>
<td>12</td>
<td>244</td>
<td>.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL B5</td>
<td>14</td>
<td>5</td>
<td>122</td>
<td>.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL CC</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRE</td>
<td>9</td>
<td>7</td>
<td>48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLAZ</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAIM</td>
<td>12</td>
<td>1</td>
<td>108</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX M</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX WS</td>
<td>37</td>
<td>33</td>
<td>222</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX WS1</td>
<td>8</td>
<td>3</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX WS2</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL RS</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL OX</td>
<td>577</td>
<td>422</td>
<td>3098</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL OX3</td>
<td>2</td>
<td>2</td>
<td>69</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL OX4</td>
<td>11</td>
<td>2</td>
<td>69</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOW WS†</td>
<td>4</td>
<td>4</td>
<td>172</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>948</td>
<td>618</td>
<td>5851</td>
<td>19.39</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>WIL BS</td>
<td>2476</td>
<td>1496</td>
<td>11578</td>
<td>22.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reduced</td>
<td>111</td>
<td>37</td>
<td>811</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>2</td>
<td>39</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FL</td>
<td>657</td>
<td>575</td>
<td>4844</td>
<td>6.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>2</td>
<td>448</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL GW1</td>
<td>50</td>
<td>32</td>
<td>383</td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL GW2</td>
<td>6</td>
<td>5</td>
<td>52</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL GW3</td>
<td>9</td>
<td>5</td>
<td>120</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIL GW5</td>
<td>13</td>
<td>7</td>
<td>145</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORG</td>
<td>3</td>
<td>1</td>
<td>46</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misc (burnt)</td>
<td>21</td>
<td>14</td>
<td>145</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>3413</td>
<td>2190</td>
<td>18787</td>
<td>32.48</td>
<td>51.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-local British</td>
<td>SOW BB1†</td>
<td>70</td>
<td>61</td>
<td>564</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td>70</td>
<td>61</td>
<td>564</td>
<td>1.67</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>5047</td>
<td>3313</td>
<td>42415</td>
<td>62.68</td>
<td></td>
</tr>
</tbody>
</table>

Coarse black sandy fabric, usually burnished (WIL BS1)
Fine black sandy fabric, usually burnished (WIL BS3)
Black firing fabric with fine flint inclusions (FL)
Black firing fabric with quartz and fine flint inclusions (QZ F)

Coarse flint (FL C)
Local oxidised
Sandy buff fabric (WIL B1)
Buff fabric with grog and organic inclusions (WIL B2)

Soft buff fabric (WIL B3)
Soft orange-brown fabric (WIL B4)
Common sandy oxidised fabric (WIL OX)
Coarse oxidised fabric with prominent iron oxide (WIL OX3)
Sandy-oxidised fabric with grog inclusions (WIL OX 4)
Pale orange mortaria fabric (OX M)
Sandy-oxidised white-slipped flagon fabric with grog inclusions (OX WS1)
Sandy-oxidised white-slipped flagon fabric (OX WS2)
Lead-glazed oxidised fabric (GLAZ)
Red-slipped micaceous oxidised fabric (WIL RS)

Local British
- Wilts Imitation Samian (WIL IMIT)
- Creamware (CRE)
- Gritty whiteware (WIL CC)
- South West white-slipped ware (SOW WS); Tomber and Dore (1998, 192).

Non local British
- South-West Black-Burnished ware 1 (SOW BB1); Tomber and Dore (1998, 129). NRFRC code SOW BB1.
- Lower Nene valley colour-coated ware (LNV CC); Tomber and Dore (1998, 118).

Continental imports
- La Graufesenque (South Gaulish) Samian (LGF SA); Tomber and Dore (1998, 28).
- Lezoux (Central Gaulish) Samian (LEZ SA2); Tomber and Dore (1998, 32).
- Baetican Dressel 20 type amphora fabric. (BAT AM); Tomber and Dore (1998, 84-5).

Finewares
Imported finewares are restricted to quantities of South and Central Gaulish samian. A total of 67 sherds (629g) of Gaulish samian, representing at least 62 vessels was recovered ranging in date from the pre-Flavian to the Late Antonine periods, with the bulk of material probably dating to c. AD 70-100. South Gaulish vessels, all of which pre date c. AD 110, predominate (64% according to vessel count) with the remainder deriving from Central Gaulish sources.

Condition reflects that of the coarsewares. The majority (65%) of vessel sherds could be identified to form (Table 3). Of the remainder, three can be assigned to vessel class and 17 chips are unassignable. Few contexts contained more than one or 2 vessels. Ditch 1 (Phase 2c) is exceptional in producing six vessels, including complete profiles of Drag. 27 and Drag. 18/31 vessels.

Some 37 South Gaulish vessels are represented. A single Drag. 24/5 cup is of pre-Flavian date. The remainder is almost certainly all Flavian. Much of this material occurs with 2nd-century or later material and can therefore be considered residual or as survivals in use. The bulk of all of the South Gaulish samian probably comes from La Graufesenque. Forms (Table 3) are dominated by platters and cups of the period c. AD 70-110. No maker-stamped or (mould) decorated vessels were recovered.

A total of 21 Central Gaulish samian vessels was recorded. The bulk of material (almost certainly entirely composed of Lezoux products) dates to the early to middle Antonine period. The preponderance of plain bowls, dishes and cups, seen with the Southern Gaulish group, is repeated. Decorated forms are restricted to a single chip of a Drag. 37 bowl. Of significance is the proportionally high occurrence of Drag. 18/31 dishes – forms which ceased production around AD 160. Later Antonine forms are generally rare, restricted to 3 vessels (Drag. 38 and 31R), two of which are unstratified.

British finewares are dominated by oxidised wares, including a single Wiltshire imitation samian vessel (Figure 10.24), and white-slipped fabrics. A north-west Wiltshire source is assumed for Wiltshire samian on the basis of its distribution. The few sherds of this fabric identified over the last 25 years are within the zone identified by Anderson (1979b, fig.1). Accepted dating for material of this type is the late 1st to early 2nd century AD, based on the similarity of some recorded designs to pre-Flavian and Flavian samian and the recovery of sherds from a Flavian context at Sea Mills, near Bristol (Bennett 1985). If such a date is accepted the Showell Farm vessel is likely to be residual within a mid to later 2nd-century context, or perhaps represents a survival in use.

Oxidised wares account for 31% of the total assemblage according to EVEs. Forms include ring-necked flagons (Figure 10.21) similar to examples in fabric 9 at Cirencester (Figure 9.7 and 9.15; Rigby 1982a, 154), a variety of carinated and round-bodied bowls, tankards in imitation Severn Valley Ware forms and cornice-rim beakers. The form of cornice-rim ("bag-shaped") beakers in Wiltshire of oxidised type can be compared with North Wiltshire colour-coated wares known from Cirencester (Rigby 1982b, D03) and Wanborough (Seagar-Smith 2001, 240). Evidence for a separate, though probably still local source, is provided by two vessels (Figure 9.8 and 9.9) with white-painted decoration, a technique not seen on the Cirencester or Wanborough examples.

Fine, probably local, greyware types occur in small quantities and include a bowl imitating a Drag. 36 bowl (Figure 10.26). Coarser reduced fabrics WIL BS and WIL GW3 include tableware forms; for example beakers and platters (Figures 9.11 and 10.28) as part of their predominantly utilitarian repertoire. Single vessels of red-slipped (Figure 10.27) and lead-glazed fabrics are also likely to be local.
Coarsewares

A single fragment of imported Dressel 20 amphora was recovered. Mortaria are poorly represented at Showell Farm. Fabric OX M is unsourced but likely to be local. Only two other vessels are recorded, both in South-West white-slipped ware (Figure 10.30 and 10.31). This fabric type is well known from Cirencester and almost certainly originates...
in the North Wiltshire region, possibly close to the small town at Wanborough (Tomber and Dore 1998, 192).

The coarseware assemblage is dominated, throughout Phases 2a-2e by black, sandy fabric WIL BS and its coarser variant WIL BS1. A link with Cirencester fabric 5 (and its coarse variant type 15) is demonstrable, not only from the similarity of the fabric (Rigby 1982a, 153), but also from a distinctive and reasonably diverse repertoire of forms. Similar material also occurs at Bagendon (Clifford 1961, fig 65 116D) and Kingsholm (Darling 1977, fig 6, 9). Cirencester fabric 5 is present in the earliest military phases in the town and continues in use until the end of the 2nd century AD.

Flint-tempered fabrics represent only a small component within the total assemblage (Table 2). The use of calcined flint is common in the Berkshire/ north Hampshire region (Timby 2000, 239) in the early Roman period. It also occurs infrequently at Wanborough (Seagar Smith 2001, 250). Flint occurs as an inclusion in Savernake type wares and an East Wiltshire source is thought likely in this instance.

Greywares form a major and constant component of the assemblage, seemingly increasing slightly over the period represented. No major greyware producing kilns of Early Roman date have been identified in the region, although it is widely believed that the later Roman production sites near Swindon at Whitehill Farm and Purton (Anderson 1979a), must have precursors. The fabrics represented are broadly comparable to Cirencester fabric 17 (Rigby 1982a), and in some instances, types WIL GW 1 and WIL GW 3, with Wanborough type 52 (Seagar-Smith 2001, 243). The likelihood is that this group of fabrics includes material from a variety of sources, all of which are likely to be reasonably ‘local’. The identification of a probable ‘second’, a necked jar with a distorted rim, might be regarded as evidence for a source nearby.

The grog-tempered group contains a small quantity of material (type GR) resembling Late Pre-Roman Iron Age types known across southern parts of Britain, which clearly continues into the Early Roman period. Savernake wares form a significant part of the assemblage. The collection includes a number of apparent sub-types (Table 2) and accords with the variability of the ware described by Tomber and Dore (1998, 191) and noted by Rigby (1982a, 154). This variability may indicate a number of different North Wiltshire sources, with a concentration in the region of Mildenhall, c. 30km to the east of the site.

The sole British traded ware present of any importance is Black-Burnished ware 1 (BB1), 2.7% of the total according to EVEs and of SOW BB1 type. Forms present comprise mainly everted-rim jars with a small number of bowls/dishes with flat or flat grooved rims. The forms represented, together with an absence of such common late form such as conical flanged bowls or jars with obtuse angled lattice decoration, suggest a date before c. AD 230.

Forms

The composition of the assemblage by vessel form is fairly typical for a rural site of this date. Jars predominate, with necked and everted-rim (BB1 type) forms most prominent among the sandy reduced wares and the larger, mainly neckless varieties dominant among the grogged (Savernake type) wares. The ‘Belgic’ derived jar form with a prominently rounded shoulder (Figure 9.16), characteristically here occurs with black-firing fabric WIL BS. Interestingly, a single example is also present in oxidised fabric WIL OX. Also noteworthy are two examples of (greyware) jars with ‘cornice’ rims (Figure 9.4) usually associated with beakers.

Open forms, consisting of dishes/platters and bowls are well represented. Platters, including stepped (Figure 10.28) and curved-sided (Figures 9.18 and 10.27) forms are derived from Gallo-Belgic precursors. Platters are also dominant among the samian assemblage (Table 3). Bowls occur with greatest variety among the oxidised wares. Curved-sided and carinated forms such as Figure 9.6 and 9.15 are local varieties of common 2nd-century forms (see Gillam 1957, nos. 214-8). Other, straight-sided dish and bowl forms are influenced by Black Burnished wares. Figure 10.25 probably imitates samian form Drag. 36, with white painted decoration replacing the barbotine swirls. A second vessel, imitating the Drag. 36 bowl, occurs in fine greyware fabric GW F (Figure 10.26). Decoration is in this instance more faithful to the original samian prototypes.

The drinking vessel component is significantly large at 15% total EVEs and is inflated by the identification of some vessels (mostly tankards) from diagnostic base sherds. This reflects the narrow date range of the group as a whole and the emergence of the bag-shaped and conical rimmed beaker as a popular form at this time. The form is derived from earlier 2nd-century continental finewares (Anderson 1980, fig. 9). The tankards present, including the substantially complete illustrated example Figure 10.32, are faithful copies of 2nd-century Severn valley forms (Webster 1976, fig. 7).
Table 3: Pottery forms (summary)

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>grog</th>
<th>redu.</th>
<th>oxid.</th>
<th>sam.</th>
<th>total</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flagon</td>
<td>Disc-neck</td>
<td></td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ring-neck</td>
<td></td>
<td>.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>1.31</td>
<td>1.31</td>
<td>3.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaker/tankard</td>
<td>uncertain</td>
<td></td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/cup</td>
<td>Beaker, bag-shaped (cornice or triangular rim)</td>
<td></td>
<td>.58</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indented</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.10</td>
<td>.38</td>
</tr>
<tr>
<td></td>
<td>?cup with bead rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.06</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>Tankard, SVW type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 24/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>1.68</td>
<td>5.11</td>
<td>20.2</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>Jar</td>
<td>Neckless, everted rim, BB1 type</td>
<td></td>
<td>3.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neckless, other</td>
<td></td>
<td>1.08</td>
<td>0.31</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Necked, medium-mouthed</td>
<td></td>
<td>0.65</td>
<td>8.07</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Necked, narrow-mouthed</td>
<td></td>
<td>.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Belgic’ type jar/bowl</td>
<td></td>
<td>.10</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large, storage jar size</td>
<td></td>
<td></td>
<td></td>
<td>.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neckless with triangular rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>2.46</td>
<td>15.84</td>
<td>1.9</td>
<td>20.2</td>
<td>47.8</td>
</tr>
<tr>
<td>Bowl</td>
<td>uncertain</td>
<td></td>
<td>.07</td>
<td></td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>carinated</td>
<td></td>
<td></td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved sided with bead rim</td>
<td></td>
<td>.12</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved sided with plain rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved-sided, ‘s’-shaped rim</td>
<td></td>
<td></td>
<td></td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved sided with flat rim</td>
<td></td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved-sided, flat bifid rim</td>
<td></td>
<td></td>
<td></td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat rim (BB1 type)</td>
<td></td>
<td></td>
<td></td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat rim with groove (BB1 type)</td>
<td></td>
<td></td>
<td></td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hemispherical, flanged</td>
<td></td>
<td></td>
<td></td>
<td>.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imitating Drag 30</td>
<td></td>
<td></td>
<td></td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imitating Drag. 36</td>
<td></td>
<td></td>
<td></td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 31r</td>
<td></td>
<td></td>
<td></td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 37</td>
<td></td>
<td></td>
<td></td>
<td>present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight-sided, bead rim</td>
<td></td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight-sided, flat rim</td>
<td></td>
<td></td>
<td></td>
<td>.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>6.37</td>
<td>2.65</td>
<td>.20</td>
<td>9.22</td>
<td>21.8</td>
</tr>
<tr>
<td>Dish/</td>
<td>Curved sided with bead rim</td>
<td></td>
<td></td>
<td></td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow bowl</td>
<td>Curved sided with plain rim</td>
<td></td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curved sided, triangular rim</td>
<td></td>
<td></td>
<td></td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat rim with groove</td>
<td></td>
<td>.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat top rim BB1 type</td>
<td></td>
<td>.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain rim</td>
<td></td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain rim with groove below</td>
<td></td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triangular rim</td>
<td></td>
<td>.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 18/31</td>
<td></td>
<td></td>
<td></td>
<td>.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 18r</td>
<td></td>
<td></td>
<td></td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 42</td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>0.86</td>
<td>.13</td>
<td>.85</td>
<td>1.84</td>
<td>4.4</td>
</tr>
<tr>
<td>Platter</td>
<td>All coarseware</td>
<td></td>
<td>94</td>
<td>.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag. 18</td>
<td></td>
<td>94</td>
<td>.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>.94</td>
<td>.40</td>
<td>.93</td>
<td>2.27</td>
<td>5.4</td>
</tr>
<tr>
<td>Mortaria</td>
<td>uncertain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>flanged</td>
<td></td>
<td></td>
<td></td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hammer-head</td>
<td></td>
<td></td>
<td></td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>0.13</td>
<td>0.13</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strainer-bowl</td>
<td>all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>26.22</td>
<td>6.13</td>
<td>2.13</td>
<td>33.7</td>
<td>80.4</td>
</tr>
</tbody>
</table>
To this material must be added cups which account for approximately 10% of the samian assemblage and a single coarseware vessel (Figure 9.19), probably imitating a Drag. 33 cup.

Other forms are only sparsely present. Flagons are especially poorly represented given, the earlier Roman date of the deposits and when compared to other drinking-related forms. Chronology is likely to be a factor affecting the very poor representation of mortaria, which tend to be rare on many rural sites until the later 2nd to 3rd centuries.

Dating: pottery by phase

Dating evidence for the Romano-British phases (2a-e) is briefly outlined in the main body of the text. Overall the period represented is a narrow one and whilst specific date markers are apparent (below), differences in the general composition are subtle. The samian is of restricted value as dating evidence: South Gaulish material, most of which is Flavian in date, would seem to be largely residual, occurring in all phases; Central Gaulish samian, largely Antonine in date, occurs in smaller quantities, although it is most abundant in Phases 2c to 2d/e. The homogeneity of the assemblage is most likely a factor brought about by a reasonably unvarying pottery supply in this period. Compositional differences are most marked when comparing Phase 2a with the succeeding Phases (2b-2e), which viewed overall appear reasonably homogeneous. The proportion of oxidised fabrics is lower for Phases 2a/2b compared with subsequent phases, more particularly for Phase 2a where the figure is less than 10% by count compared to in excess of 15% for each succeeding phase. Further comparisons between the Phase 2a and 2b assemblages reveal differences in the representation of certain fabrics including, most markedly, Savernake ware. This type (fabric SAV GT) is most abundant in Phase 2a, representing approximately 16% of the assemblage (according to sherd count), a figure that is reduced to 8% for Phase 2b and 6% and 7% for Phases 2c and 2d respectively.

Date markers- Phase 2a/b

Four sherds of South Gaulish samian of Flavian date and a single Central Gaulish Drag. 33 cup dateable to the Hadrianic to Antonine period were recovered from Gully 3, Phase 2a deposits. Non-sigillata finewares are also poorly represented. Flagons, tankards, shouldered jars and bowls occur among Phase 2a, but not in closely dateable vessel forms. An unusual bowl (Figure 9.6) is noteworthy and can be paralleled among examples in (reduced) Cirencester fabric 5 (Rigby 1982a, nos. 470 and 491), from 1st-century AD contexts, and from Wanborough in a more comparable oxidised fabric (Seagar Smith 2001, no. 122) from a phase corresponding to AD 60-65.

Dating evidence for the black-sandy types which dominate the Phase 2a/b groups is largely reliant on material from Cirencester, where fabric 5 is closely comparable in terms of fabric and the range of forms. Among the forms most commonly represented at Showell Farm are a number of platters, shouldered jars/bowls (Figure 9.18 and 9.16) and other forms which can be readily paralleled among vessels known from Cirencester. Platters of types, which are ultimately derived from Gallo-Belgic forms, occur in four Phase 2b contexts. Such vessels compare with Cirencester examples from deposits immediately post-dating the military occupation and unlikely to much post-date c. AD 100 (Rigby 1982, nos 193-197). Other forms, including everted-rim jars imitating Black-Burnished ware vessels, certainly date to the middle or later years of the 2nd century (Rigby 1982b, C14).

Phase 2c

Black-sandy coarseware types continue to dominate Phase 2c and only subtle differences are apparent in the representation of other types. Samian is scarcely more abundant compared with the preceding phase. Significantly, however, Central Gaulish vessels of certain 2nd-century currency now predominate.

Typically (earlier) Antonine in date are bag-shaped beakers with cornice rims (Figure 9.8-11) which occur in oxidised and reduced ware fabrics. The form of these vessels is derived from continental colour-coated beaker forms (Anderson 1980, 6-9) current in the first half of the 2nd century AD. Such forms are copied in Britain at centres including Colchester, the Lower Nene Valley and North Wiltshire, probably from the early Antonine period. A date for this material of c. AD140-180 is favoured here. Black-sandy fabric WIL BS present in Phase 2c shows considerable influence from the south-western British Black-Burnished ware industries, and is unlikely to pre-date the early Antonine period (Holbrook and Bidwell 1991, 97-8). A dish in greyware fabric WIL GW1, with a flat grooved rim (Figure 9.14) imitates a BB1 form of probable later Antonine or later date. True (south-western) Black-Burnished ware occurs in small quantities in ditch 1, as everted-rim jars with acute-angled lattice decoration and, in one instance, a burnished wavy
line below the rim (Figure 9.13). Absence of specific forms of BB1, including conical flanged bowls or jars with obtuse-angled lattice, and the overall paucity of this ware type, probably indicates an upper limit for this phase of before c. AD 250.

Phases 2d/e

Phases 2d/e could not be separated on the basis of the artefactual material from earlier phases, with reduced coarseware types continuing to dominate. Black-Burnished ware forms include everted-rim jars with acute angled lattice and/or burnished wavy decoration on the rim and flat-rimmed bowls or dishes indicative of the late 2nd to early 3rd century. Occasional other forms such as disc-necked flagons (Figures 9.17 and 10.22) in fabric OX WS compare closely with examples from Cirencester and neighbouring sites (Rigby 1982b, no. 139; Timby 1999, no. 162) and are consistent with the date range proposed. Other vessels can also be attributed to this date bracket, for example South-West White-Slipped ware mortaria with hammer-head and flanged rim forms (Figure 10.30 and 10.31), both from (unphased) Area C, trench 2, gully fill 2007. Each vessel can be paralleled among finds from Cirencester (Rigby 1982b, nos. 4 and 48) where they are considered to date to the first half of the 3rd century AD. The absence of types post dating c. AD 240/50, which might include Oxfordshire colour-coated wares and flanged bowls or obtuse-lattice decorated Black-Burnished ware, is likely to be significant.

Discussion

The range of coarseware forms is entirely consistent with a primarily utilitarian assemblage. The relatively large drinking vessel component is probably skewed by recording methods but may also reflect the narrow chronology of the assemblage and the coincident production by local sources of certain beaker forms. Overall, the repertoire is not far removed from some Late pre-Roman Iron Age groups, with emphasis on cooking, storage and personal serving vessels. Specifically Roman vessel forms, such as flagons and mortaria are poorly represented, indicating that Roman culinary practices may not have been widely adopted. Evidence for use is relatively sparse, probably due, at least in part, to the poor surface survival. Eleven sherds preserved traces of burnt food residues, three had traces of external sooting and a further 11 exhibited white limey internal residues, probably resulting from heating or long-term storage of water. A Savernake jar (Figure 9.5) is notable for pitting and wear to the interior, possibly resulting from storage of acidic contents. Use as an impromptu strainer can be inferred for a single vessel with multiple (post-firing) perforations to its base. A perforation to the neck of a BB1 jar (Figure 10.23) may have been to facilitate suspension (for cooking). Other perforations on a fine greyware bowl (Figure 10.26) were probably for repair. Evidence of vessel repair was recorded on two Central Gaulish samian vessels, which have been repaired using shaped staple type rivets. A single South Gaulish Drag. 27 cup appears to have been trimmed at a point mid way down the wall, presumably to create a serviceable vessel after breakage.

The low status of the assemblage is best demonstrated by the small amounts of amphorae and continental fineware imports. Samian represents 5.5% of the Roman assemblage (total EVEs) and only 1.2% of minimum vessel count. Such a figure is very much lower than for the equivalent period at Cirencester (Cooper 1998, 327-31) and consistent with rural sites in the region and beyond (Willis 1998).

Illustration catalogue (Figures 9 and 10)

The illustrated material is arranged according to Phase and with larger context groups presented together.

Phase 2a/2b

5 SAV GT. Large storage jar with bead rim with pitting to interior. Fence 8. Phase 2b.
6 WIL B1. Bowl, curved-sided, ‘s’-shaped and bifid rim. Gully 3. The s-shaped and bifid rim can be paralleled among examples in (reduced) Cirencester fabric 5 (Rigby 1982a, no. 470 and 491), from 1st-century AD contexts, and from Wanborough in a more comparable oxidised fabric (Seagar Smith 2001, no. 122) from a phase corresponding to AD 60-65. Phase 2a

Phase 2c ditch 7

7 WIL BS. Jar with everted rim.
8 WIL OX4. Bag-shaped beaker with everted, grooved rim with traces of white-painted decoration.
11 WIL GW. Bag-shaped beaker with cornice rim.
12 WIL BS. Jar with everted rim, imitating BB1.
13 SOW BB1. Jar with everted rim-BB1 type and burnished wavy line below rim.

Phase 2c other

14 WIL GW. Dish with bead and flange rim. Ditch 1.
SHOWELL FARM, CHIPPEHAM. EXCAVATIONS IN 1999

33

Phase 2d/e ditch 7 and other
19 WIL OX. ?cup possibly imitating Drag. 33, with bead rim. Ditch 7.
22 OX WS. Flagon with disc-neck. Ditch 7
24 WIL IMIT. Bowl in imitation of samian form Drag. 30. The decoration is divided into a repeat of at least 4, probably 5 panels, separated by a wreath of vertical bifid leaves (?ears of wheat). The design is based on a saltire; a toothed wheel with eight spokes at the centre; straight wreaths of bifid leaves extending into each corner, dividing the panel into 4 quadrants. In the left and right hand segments, pairs of tendrils emanate from the wheel and drop to the bottom. The upper section has a trapezoid ornament with rounded corners infilled with dots. The lower zone has a triangular motif with its apex towards the wheel. It is clear from the variations in the repeated ornaments that these were incised freehand into the mould. Ditch 7.
25 WIL OX. Bowl imitating Drag. 36. with white painted decoration to flange upper. Ditch 7.
26 GW F. Bowl imitating Drag. 36. with barbotine traces to flange. Repair hole. Ditch 7.
27 WIL RS. Platter. Ditch 5.
29 WIL OX. Curved-sided dish with bead-rim. Ditch 2.

Ceramic building material

Small quantities of Roman tile (6 fragments, weighing 1118g) were recovered from five contexts. A single tegula and box flue tile fragment were recovered from ditch 11 and a further two tegula were recovered from ditch 7, both within Phase 2d. The remaining fragments were non-diagnostic. All fragments are of a similar, fairly soft, pale orange fabric with common red iron oxide and rare quartz and calcareous inclusions. Although roof and flue tile is present, the quantities are too small and scattered to suggest that a substantial Romanised structure lay just beyond the excavated areas.

Metalwork and fired-clay objects

The published metalwork catalogue has been restricted to items of intrinsic interest or of specific chronological significance. Objects are described below according to functional category. A full object catalogue is included in the archive.

Personal items (Figure 11)
Cosmetic grinder – end-looped mortar (Figure 11.1)
Use as cosmetic grinders, in combination with a crescentic ‘pestle’, has been suggested for this object class which appears to represent an insular British development (Stead 1986, 136; Jackson 1985, 165). A large number have been recorded (Jackson 1985), mainly from sites in eastern Britain, but extending into southern Wales and with examples from Cirencester and Wanborough. The elaborate zoomorphic decoration of some mortars indicates Late Pre-Roman Iron Age ancestry. Jackson (1985, 175-6) indicates that the class may continue into the 2nd century AD.

Brooches
Hinged iron type (Figure 11.2)
Iron brooches with comparable hinged design are known from Silchester (Corney 2000, nos. 7-10), Baldock, Herts. (Stead 1986, nos. 128-30), and from the north-west Wiltshire villa site at Euridge Manor, Colerne (Mackreth 2000, nos. 7-9). The form of the bow on no. 2 is more arched and closer to Colchester derivatives known in iron, for instance from the Ditches, North Cerney, Glos. (Mackreth 1988, 45). The use of iron is likely to be a pre-Flavian characteristic (ibid). A predominantly Claudian/Neronian date is indicated for hinged iron brooches from Silchester (Corney 2000, 322-5).

Unphased material
be unusual. The Nauheim derivative is the most common brooch class for the Late Pre-Roman Iron Age to Early Roman period, c. AD 30-60, and occurs over the whole of southern Britain.

3 Ditch 3. Phase 2d. Nauheim derivative. Copper alloy, surviving length 34mm. Four coil spring with internal chord. Triplet moulding to lower part of bow. The bow is 'D-sectioned', apparently cold-worked and flattened below the moulding and, at the head, to form short 'wings'. The catchplate is missing.

Colchester Derivative (Figure 11.4)
The exact form of no. 4 is obscured by unusually heavy corrosion. The apparent method of attachment is by means of a bi-perforated central lug, a device which marks this out as belonging to the most common, developed form. The absence of cavetto mouldings indicates that it belongs to Crummy's Colchester BB type (Crummy, after Hull, 1983, 12). Brooches of this general class are abundant in post-conquest contexts in sites across southern Britain and probably remain in currency into the Flavian period (Olivier 1988, 46).

4 Unstratified. Colchester derivative. Copper alloy. Length 38mm. Corrosion has removed almost all traces of the original surfaces. The pin and half of the ?10 coiled spring are missing. The bow appears to be 'D-sectioned and plain.

Polden Hill (Figure 11.5)
Polden Hill brooches are distinguished by the method of retaining the spring. This is by means of closed wings, perforated to secure an axis bar and with the chord retained by a perforation on the upper face of the head. The Polden Hill class, whose distribution has a marked tendency to western areas of Britain, is, as with this example, frequently elaborately ornamented. The form may have evolved in the pre-Flavian period, but is most common in the Flavian to early 2nd-century period (Butcher 2001, 56). Side flanges at the head end of the bow are likely to be a later development in the class. However the general shape of this brooch, which is similar to two-piece Colchester forms, and the decoratively pierced catchplate, might suggest an earlier Flavian date. The form of the catchplate is similar to an example with an East Midlands provenance illustrated by Hattatt (1985, no. 374).

5 Gully 1. Phase 2c. Polden Hill. Copper alloy. Length 66mm. Complete, except for portion of pin and catchplate. Central bifid crest and side flanges are knurled. The wings each feature two double-grooved mouldings. Openwork decoration to the catchplate.

6 Ditch 7. Phase 2d. Plain trumpet-headed. Copper alloy. Length 52mm. Complete except for portion of pin and lower catch-plate. Pin is sprung, with an axial bar passing through the central, perforated lug. The axial bar may originally have extended above the head to form a loop. Large, complex waist moulding, the exact form of which is obscured by corrosion. This is balanced by a large disc-like foot moulding.

Knee brooch (Figure 12.7)
Knee brooches most commonly occur in early to middle 2nd-century AD contexts although the class probably continues in use into the early 3rd century AD. Crummy (1983, 14) asserts a distribution mainly in the west of Britain for the type. Unusually, no brooches of this type were represented among the otherwise large and varied group from Wanborough (Butcher 2001). A number of enamelled knee brooches with a similar spring arrangement are illustrated by Hattatt (2000, fig. 194).

7 Ditch 7. Phase 2d. Enamelled 'knee' brooch. Copper alloy. Surviving length 29mm. Pin, head loop, and lower part of catchplate missing. Square panel on bow with inner triangular panel in-filled with enamel appearing yellow green. Outer zone dark blue. Five coil spring with inferior chord mounted on axial bar passing through closed wing ends. 'Top hat' form foot terminal.

Fragments (not illustrated)
None of the brooch fragments listed can be identified to a particular class with any certainty and are not illustrated (n.i.). The short length of the hinged pin from ditch 7 probably indicates use with a plate brooch.

n.i Ditch 7. Phase 2d. Bow brooch fragment. Copper alloy. Surviving length 24mm. Remaining portion of bow it triangular in section. Extends to a triangular catchplate and short, upturned foot.

n.i. Colluvium 97. Bow brooch fragment. Copper alloy. Surviving length 31mm. Flat bow, tapering slightly to foot. Recess along length of back with double line of zigzag.
Fig. 11 Small finds: personal items (scale 1:1)
n.i. Ditch 7. Phase 2d. Hinged brooch pin. Copper alloy. Length 29mm. Flattened end perforated for axial bar.

Finger ring (not illustrated)
The form of this ring and the use of incised decoration to the bezel are similar to an example of 2nd-century date from Wanborough (Hooley 2001, no. 91). The faceted form is widespread in the 3rd century (Phillips and Henig 2000). A number of rings, with or without a bezel but with polygonal outer hoop are also known from the locality, including an example in gold from Froxfield, Wiltshire (ibid.) and two in copper alloy from Wanborough (Hooley 2001, 92).

n.i. Ditch 9. Phase 2d. Finger ring with expanded bezel and polygonal hoop. Copper alloy. Complete small ring. Hoop is rounded and slightly flattened – length (internal) 17mm, depth 16mm. Polygonal outer hoop is 9-sided, including top-most facet which serves as the bezel. Width tapers from bezel/shoulder to bottom of hoop. The bezel is rectangular with lines of zigzag above and below a horizontal groove and within a plain border.

Tools

Knife (not illustrated)
A single knife blade was recovered of Manning’s (1985, 115) type 15. This is seemingly the most common of Roman forms and was current throughout the period.

n.i. Ditch 3. Phase 2d. Tanged knife fragment (Manning type 15). Iron. Surviving length 75mm. The back is straight, the cutting edge straight and angled upwards to the (absent) tip. Tang (also broken) is square sectioned and central to blade.

Crafts (Figure 12)

?Loomweight (Figure 12.8)
The bar-like fired clay object no. 8 derives from a mid to late 2nd century ditch 7. It has a soft and pale brown fabric, with abundant chalk-like inclusions and frequent voids from vegetable tempering. In the absence of a perforation, identification is tentative. The closest parallel for this and a similar but more fragmentary example from the same context is from Baldock, Herts., where similar items are described as ‘tall rectangular’ form loomweights (Foster 1986, no. 689). Use as household or possibly thatch weights is also possible.

n.i. Ditch 7. Phase 2d. Copper alloy with tinning. XRF reveals metal to be heavily leaded bronze. Vessel rim fragment – Diam. approx 140mm. Flat top rim from small ?bowl. Rim edge is bent-over rim. Traces of tinning below rim only. Thickness 0.4mm.

Objects associated with hunting

Slingshot (Figure 12.9)
Two fired clay objects interpreted as sling missiles were recovered. Both examples are in a similar, hard, inclusionless fabric. Similar objects are known from Late Iron Age and earlier Romano-British contexts across Britain. Examples from the region include Glastonbury (Bulleid and Grey 1917) and Roughground Farm, Lechlade, Glos. (Palmer and Allen 1993, fig. 108, nos. 136-8). The size and comparative fragility of such items indicate use for hunting of game or possibly for defence against animal predators.

9 Pit 328. Phase 2c. Oval/bi-conical slingshot. Fired clay. Length 40mm. Essentially complete, but with some spalling to one side.

Household items

Vessel fragment with XRF analysis

by Dr. B. Gilmour (not illustrated)
The form of this fragment is likely to have been a small bowl, although it is difficult to be certain given its small size. A colander from Colchester (Crummy 1983, no. 2029) has a similar rim form and is of comparable size. The presence of tinning on this fragment, however, probably indicates a more decorative use.

n.i. Ditch 7. Phase 2d. Copper alloy with tinning. XRF reveals metal to be heavily leaded bronze. Vessel rim fragment – Diam. approx 140mm. Flat top rim from small ?bowl. Rim edge is bent-over rim. Traces of tinning below rim only. Thickness 0.4mm.

Coins

Catalogue

1 Ditch 1. Phase 2c. As of Domitian AD 81-96. Reverse: Fortuna with rudder and cornucopia (Poor preservation precludes RIC identification).

2 Unstratified Late Roman bronze coin of Gloria Exercitus type, dateable to AD 330-5

3 Unstratified George II halfpenny dateable to AD 1740-54

Glass

by H.E.M. Cool (not illustrated)
All four of the fragments of glass are of Roman date. The mould blown fragment from the primary fill of gully 4 can be dated to the third quarter of the 1st
Fig. 12 Small finds: personal items and crafts (scale 1:1)
century AD. It probably came from a cylindrical beaker. Similar rows of pellets between bordering ribs occur on a blue/green beaker from the Neronian site at Kingsholm (Price and Cool 1985, 46, no. 18). On the Kingsholm vessel one of the pellet rows is bordered by a zone of lattice decoration and the tip of a V-shaped moulding seen on the Showell Farm piece might hint that a similar decoration was also present on this vessel. This is an unusual discovery because 1st-century mould blown vessels are not normally found on rural sites.

The form of the vessel from the upper fill of ditch 7 cannot be identified, but the colour and ribbed decoration would be consistent with a 1st to mid 2nd-century AD date as a variety of common forms of that date have this combination of features (see for example Price and Cottam 1998, 78, 137 and 152).

There is also one fragment (test-pit 26) from a blue/green prismatic bottle, a very common 1st to mid 3rd-century form (Price and Cottam 1998, 194-9), frequently found on rural sites. The remaining blue/green body fragment cannot be more closely dated than to the 1st to 3rd century.

Catalogue
1. Gully 4. Phase 2a. Body fragment. Deep blue; mould blown. Straight side. Moulded decoration consists of a band of circular pellets (3 extant) between two horizontal ribs; the tip of a V-shaped moulding remains beyond one of the ribs. Dimensions 23mm x 17mm, wall thickness 1.5mm
2. Ditch 7. Phase 2d. Body fragment. Light green. Two ribs. Dimensions 16mm x 14mm, wall thickness 2mm
4. Unstratified. Body fragment; blue/green

Metallurgical residues
A very small quantity of metallurgical residues (208g) was recovered from three contexts assigned to Period 2. This material would appear to be of very similar composition, characteristically dense with low vesicularity. A fragment from gully 575 features a smooth, convex underside and is presumed to represent a fragmentary smithing hearth bottom. The material represents limited evidence for early Roman ferrous metalworking activity, most likely in the form of small-scale smithing.

BIOLOGICAL REMAINS

Radiocarbon Dating
by Annette Hancocks

Four radiocarbon measurements were obtained from samples at Showell Farm. Three samples were subjected to AMS dating. A further sample (Wk-15451), from Grave 2 proved to be unsuitable for analysis as the bone contained insufficient nitrogen. Samples were processed during 2004 at the University of Waikato Radiocarbon Dating Laboratory. For details of methods see University of Waikato Radiocarbon Dating Laboratory Website (2004).

Results and Calibration
The results are conventional radiocarbon ages (Stuiver and Polach 1977) and simple calibrations of the results are given in Table 4. All have been calculated using the calibration curve of Stuiver et al (1998) and the computer program OXCal 3.9 Bronk Ramsey (2003). Date ranges cited in the text are those at 95% confidence level unless otherwise specified. Ranges are derived from the probability method (Stuiver and Reimer 1993).

Charred Plant Remains
by Wendy J. Carruthers

Soil samples were taken for the recovery of

Table 4: Radiocarbon dating results

<table>
<thead>
<tr>
<th>Laboratory Number</th>
<th>Type</th>
<th>Context</th>
<th>Period</th>
<th>Description</th>
<th>Material used</th>
<th>Radiocarbon Age (BP)</th>
<th>Calibrated date range (at 2 95.4% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk 15448</td>
<td>AMS</td>
<td>420<43a></td>
<td>1</td>
<td>Ring Ditch 1</td>
<td>Hazelnut</td>
<td>3822 +/- 38</td>
<td>2460-2140 cal BC</td>
</tr>
<tr>
<td>Wk 15449</td>
<td>AMS</td>
<td>420<43b></td>
<td>1</td>
<td>Ring Ditch 1</td>
<td>Hulled Barley</td>
<td>3768 +/- 38</td>
<td>2300-2030 cal BC</td>
</tr>
<tr>
<td>Wk 15450</td>
<td>AMS</td>
<td>Skeleton 662<29></td>
<td>2d</td>
<td>Grave 1</td>
<td>Human left tibia</td>
<td>2040 +/- 37</td>
<td>170 cal BC-60 cal AD</td>
</tr>
<tr>
<td>Wk 15451</td>
<td>RM</td>
<td>Skeleton 407</td>
<td>2d</td>
<td>Grave 2</td>
<td>Bone</td>
<td>n/a <0.5%N</td>
<td>n/a</td>
</tr>
</tbody>
</table>
SHOWELL FARM, CHIPPENHAM. EXCAVATIONS IN 1999

environmental remains and processed using standard methods of flotation (flot mesh = 250 microns, residue sieved to 500 microns). Charred plant remains recovered from the samples are listed in Table 5. Nomenclature and most of the habitat information is taken from Stace (1997).

Charred plant remains were scarce with concentrations of less than six fragments per litre (fpl) occurring in twelve of the twenty fully analysed samples, and were not particularly well preserved; many were encrusted with fine silt making identification difficult. The samples concerned were primarily from gully, ditch and pit fills. A few concentrated deposits of burnt cereal processing waste and processed grain were recovered from fence 8, posthole 270 and drying oven 1. The results are discussed in more detail below by period.

Period 1 Early Bronze Age ring ditch 1

Of the two samples assessed from ring ditch 1, only one (<43>) produced charred plant macrofossils consisting of a few fragments of hazelnut shell (*Corylus avellana*) and several poorly preserved cereal grains. Both emmer/spelt wheat (*Triticum dicoccum/spelta*) and barley (*Hordeum sp.*) were being cultivated, although the barley was too poorly preserved to tell whether it was hulled or naked. Barley was the most frequent cereal (22 grains compared with 3 wheat grains), as is typical of most Bronze Age sites. However, the results from a single small sample are inadequate to determine the importance of the different crop plants. Since no chaff or weed seeds were present, these remains probably derived from burnt domestic food waste. A fragment of hazel nut and a hulled barley seed were subsequently submitted for radiocarbon dating (Table 4).

Phase 2b

Sample <1> came from fence 8. A small concentration of cereal processing waste (CPW) was recovered from this sample (18.3 fpl), comprising a few cereal grains, frequent hulled wheat chaff fragments and one or two weed seeds. The ratio of grain to chaff to weed seeds was 2:58:1, confirming the interpretation as cereal processing waste. Both emmer (*Triticum dicoccum*) and spelt wheat (*T. spelta*) were represented, although spelt was by far the most abundant cereal identified. Since spelt glume bases are more robust than emmer chaff there may be some taphonomic bias in operation. However, spelt wheat had taken over as the principal cereal being cultivated by the Romano-British period (Greig 1991). As on most sites of this period, small quantities of barley were present in three of the nine samples. It is likely that this crop was primarily used for fodder, so it may be under-represented in charred plant assemblages.

Phase 2c

Posthole 270 (sample 4) produced the highest concentration of charred plant remains out of all twenty samples discussed (87.3 fpl). The ratio of grain to chaff to weed seeds was 1:3:3, indicating that cereal processing waste is present. Although the number of grains being lost with the waste appears to be high, experimental work has shown that grains are far more readily preserved than chaff (Boardman and Jones 1990), so this preservation bias needs to be taken into account.

As in the Phase 2b sample of cereal processing waste, spelt chaff was significantly more frequent than emmer chaff, and barley was present in small quantities. However, weed seeds were much more...
Table 5: Charred Plant Remains

KEY: Feature types:
- C = cremation;
- D = ditch;
- F = fence;
- G = gully;
- DO = drying oven;
- P = pit;
- PH = posthole;
- RD = ring ditch

Habitat Preferences:
- A = arable;
- C = cultivated;
- D = disturbed/waste;
- E = heath;
- G = grassland;
- H = hedgerow;
- M = marsh/bog;
- R = rivers/ditches/ponds;
- S = scrub;
- W = woods;
- Y = waysides/hedgerows;
- a = acidic soils;
- c = calcareous soils;
- n = nutrient-rich soils;
- o = open ground;
- d = damp soils;
- y = dry soils;
- * = plant of economic value

<table>
<thead>
<tr>
<th>Sample Context</th>
<th>Feature no. & type</th>
<th>Feature no. & type</th>
<th>TAXA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43 699</td>
<td>47 702</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1 RD 1</td>
<td>12 457</td>
<td>13 459</td>
</tr>
<tr>
<td></td>
<td>14 461</td>
<td>15 463</td>
<td>34 352</td>
</tr>
<tr>
<td></td>
<td>11 111</td>
<td>2 148</td>
<td>49 704</td>
</tr>
<tr>
<td></td>
<td>4 271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cereals:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticum dicoccum/spelta (emmer/spelt wheat grain)</td>
<td>3 3 2</td>
<td>7 1</td>
<td>1 10</td>
</tr>
<tr>
<td>Triticum dicoccum/spelta (emmer/spelt wheat grain, sprouted)</td>
<td>2 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hordeum sp. (hulled barley grain)</td>
<td>22 2</td>
<td>6</td>
<td>1 1</td>
</tr>
<tr>
<td>Avena sp. (wild/cultivated oat grain)</td>
<td>2 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indeterminate cereals</td>
<td>7 9</td>
<td>1 1 1 1 4 36</td>
<td></td>
</tr>
<tr>
<td>Chaff:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum spelta L. (spelt glume base)</td>
<td>1</td>
<td>2</td>
<td>59 23</td>
</tr>
<tr>
<td>Triticum spelta L. (spelt spikelet fork)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum spelta L. (spelt rachis fragment)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum dicoccum (emmer glume base)</td>
<td>3 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum dicoccum (emmer glume base)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum sp. (barley rachis frag.)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avena sp. (oat awn fragment)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereal sprout</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeds:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chenopodium album L. (fat hen seed) CDn</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex patula/prostrata (orache seed) CDn</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae embryo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stellaria media (chickweed seed) CDn</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montia fontana ssp. chondrosperma (blinks seed) Gd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus avellana L. (hazel nut shell frag.) HSW*</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polygonum asariculare L. (knotgrass achene) CD</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fallopia convolvulus (L.) A.Love (black-bindweed achene) AD</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rumex acetosa agg. (sheep’s sorrel achene) EGa</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex sp. (dock achene) CDG</td>
<td>8 14 20</td>
<td>7 6</td>
<td>4</td>
</tr>
<tr>
<td>Malva sylvestris. (common mallow nutlet, with capsule frag.) DG</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Malva sp. (mallow nutlet) DG</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosa sp. (rose seed) HSW*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium/Lotus sp. (clover/trefoil) DG</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicia/Lathyrus sp. (c.2mm, small seeded weed vetch/tare) CDG</td>
<td>1 1 1</td>
<td>2 1 1</td>
<td></td>
</tr>
<tr>
<td>Linum catharticum L. (purging flax seed) G</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galium aparine L. (cleavers) CDH</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galium palustre L. (common marsh-bedstraw) GdPMF</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata L.(ribwort plantain) Go</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontites verna/Euphrasia sp. (red bartsia/eyebright) CD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tripleurospermum inodorum (L.)Schultz-Bips. (scentless mayweed achene) CD</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rhinanthus sp. (yellow rattle etc. achene) G</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primulaceae (scarlet pimpernel etc. seed)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleoharis subg. Palustres (spike-rush nutlet) MPd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex sp. (trigonsous sedge nutlet) MPd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex sp. (lenticular sedge nutlet) MPd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus sect. Bromus (chess caryopsis) ADG</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Lolium perenne-type grass caryopsis</td>
<td>5 1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Long seeded grass caryopsis</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pooaeae (small seeded grass caryopsis) CDG</td>
<td>2 9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total charred remains:	36 75 28 24 8 8 48 11 6 183 349	
Sample size (litres):	30 30 5 5 5 3 30 10 10 4	
Fragments per litre:	1.2 2.5 5.6 4.8 1.6 2.7 1.6 1.1 0.6 18.3 87.3	
SHOWELL FARM, CHIPPENHAM. EXCAVATIONS IN 1999

Sample Context

<table>
<thead>
<tr>
<th>Feature no. & type</th>
<th>Sample</th>
<th>Context</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXA</td>
<td></td>
<td></td>
<td>2d</td>
</tr>
</tbody>
</table>

Cereals:

- **Triticum dicoccum/spelta** (emmer/spelt wheat grain) 10 15 15 4 3 3 14 9 14
- **Triticum sp. (wheat grain NFI)** 3 3
- **Hordeum sp. (barley grain)** 3 3 6 3 1 1 6
- **Avena sp. (wild/cultivated oat grain)** 1 1 2
- **Avena/Bromus sp. (oat/chess grain)** 1

Indeterminate cereals:

21 55 61 15 5 4 3 13 17 9

Chaff:

- **Triticum spelta** L. (spelt glume base) 1 1 15 26 14 2 3
- **Triticum spelta** L. (spelt spickelet fork) 1
- **Triticum dicoccum** (emmer glume base) 1
- **Triticum dicoccum** (emmer spickelet fork) 24 2 44 44 19 20 6 7 15
- **Hordeum sp.** (barley rachis frag.) 2
- **Avena sp.** (oat awn fragment) 1 2
- **Cereal sprout** 1 4

Weeds:

- **Chenopodium album** L. (fat hen seed) CDn
- **Atriplex patula/prostrata** (orache seed) CDn
- **Chenopodiaceae embryo**
- **Stellaria media** (chickweed seed) CDn 2
- **Montia fontana** ssp. chondrocorpa (blinks seed) Gd 1 1
- **Polygonum ascalineum** L. (knottgrass achene) CD 2
- **Fallopia convolvulus** (L.) A.Love (black-bindweed achene) AD
- **Rumex acetosella** agg. (sheep’s sorrel achene) EGa
- **Rumex sp.** (dock achene) CDG 1 2 1 5 23 5
- **Malva sylvestris** (common mallow nutlet, with capsule frag.) DG
- **Malva sp.** (mallow nutlet) DG
- **Rosa sp.** (rose seed) HSW*
- **Triticum spelta** L. (spelt rachis fragment) 1
- **Triticum dicoccum / spelta** (emmer/spelt rachis fragment) 3 5 2

Total charred remains:

73 89 88 99 109 62 28 51 103 74

Sample size:

30 10 10 10 10 5 10 2 30

Fragments per litre:

2.4 8.9 8.8 9.9 10.9 12.4 2.8 25.5 3.4
frequent in this sample, comprising at least six taxa. In addition to some common weeds of cultivated and disturbed soils, several seeds of common mallow (Malva sylvestris) were recovered. This native plant can be eaten as a vegetable and the seeds make a tasty snack (Mabey 1972). Mallow appears to have been popular in Roman times, since it is much more frequently recovered from assemblages of this date. A mallow seed was also present in a Phase 2b sample 34 from pit 308.

Seeds tentatively identified as perennial ryegrass (Lolium perenne-type) were remarkably frequent in this single Phase 2c sample (59, plus 57 less well-preserved ‘long-seeded grass’ seeds). This large-seeded weedy grass is particularly frequent in late Iron Age to late Roman cereal processing waste deposits in central and southern England (Carruthers 2002); along with chess (Bromus sect. Bromus) which is abundant on some sites of this period, it was tolerated to some extent (Campbell 2000). Alternatively it may simply have been too difficult to eradicate from spelt crops that were being cultivated more intensively during this time.

Phase 2d

Two samples from ditches 7 (sample 45) and ditch 11 (sample 5) produced low concentrations (3.4 fpl and 2.4 fpl) of cereals, chaff and weed seeds in roughly equal proportions of grain to contaminants. These charred remains were probably washed into the ditches in run-off from fields that had been manured with domestic waste. Alternatively, some burnt material may have been deposited as waste, or in situ burning of vegetation may have taken place. Two of the taxa identified are indicative of damp soils, such as might occur in a ditch; sedge and cf. spike-rush (cf. Eleocharis subg. Palustres). Domestic waste is equally likely to contain these taxa if hay and bedding were being burnt.

The most productive samples from this Phase came from a drying oven 1. Six samples from this feature were examined, two of which produced deposits primarily composed of grain, and four containing cereal processing waste. Two samples (16 and 17; Table 5) came from context 526, an ashy deposit recovered from the top end of the T-shape flue (north-west end). These samples consisted of 99% and 98% grain, respectively, the few identifiable grains being almost equally emmer/spelt wheat and barley (30:28 grains). It is difficult to tell whether the increased recovery of barley from this feature is due to more barley being grown during this phase, or preservation factors. Barley is more likely to become charred in an oven than in a domestic hearth, since it requires parching if it is going to be husked or malted, and possibly prior to storage. Too few ‘non-oven’ features were examined from this phase to make comparisons with the Phase 2 features, although ditch 7 (sample 45) did produce more barley than emmer/spelt grains.

Two samples derived from the stoking end of the oven, with sample <21> from directly above a stone slab (366) and sample <20> from alongside the slab. A further two samples <22> and <23> derived from above the stone slab and from the primary fill of the oven, below the stone slab. Most of the charred plant remains came from above and beside the stone slab (9.9, 10.9 and 12.4 fpl compared with 2.8 fpl from 23). All four samples (20-23) contained more chaff than grain or weed seeds, indicating that they represented the burnt remains of cereal processing waste used as fuel. Further confirmation of this was the presence of some hay meadow/grassland taxa, including purging flax (Linum catharticum), yellow rattle (Rhinanthus sp.), marsh bedstraw (Galium palustre) and ribwort plantain (Plantago lanceolata). This, too, had probably been used as tinder.

Almost all of the well-preserved glume bases in the cereal processing waste were from spelt wheat, with only one being identifiable as emmer wheat. This could indicate a further reduction in the cultivation of emmer in favour of spelt, or poorer conditions of preservation in the oven favouring the survival of the more robust remains. A total of three oat grains were recovered from the 45 samples submitted for assessment, including one from sample 21. It is not possible to determine whether oats were growing as weeds or a minor crop, as floret bases were not preserved. Since sample 21 consisted of cereal processing waste perhaps the former is more likely. However, all three were found in Phase 2d samples, so it is likely that oats were being introduced as a crop at this time.

In her review of the archaeobotanical evidence from Romano-British corn driers, van der Veen (1989) found that in 45% of cases chaff had been used for fuel. The crop plants recorded from all deposits samples were as follows:

- in 72% at least some spelt was identified;
- in 41% barley was present;
- 36% produced both spelt and barley, or unspecified ‘wheat’ and barley.

Van der Veen (ibid.) suggests that such drying ovens would have performed a variety of functions, including drying prior to storage and drying prior to husk removal and malting. Only three of the
twenty-one ovens included in the review produced definite evidence of malting, i.e. large quantities of sprouted spelt grains. At Showell Farm all four cereal processing waste samples produced some sprouted emmer/spelt grains, and samples 20 and 21 contained a few detached sprouts. Unfortunately few of the grains in the six oven samples were well-enough preserved to determine whether or not they had sprouted, so it is not possible to confirm that the sprouting was deliberate, but this in itself could indicate that malting had taken place, as distortion of the grain occurs during the growth of the sprout. The grain in the T-end of the oven did not show signs of sprouting, so it seems that the final use of the oven had probably not been for malting. There is evidence for the use of spelt in the production of malt during the Roman period (Hillman 1982), but by the medieval period barley became the preferred cereal.

A single sample (37) was taken from pit 675. A surprisingly high concentration of charred plant remains (25.5 fpl) was recovered from the small soil sample, including grain, chaff and weed seeds at a ratio of 5:1:3. A rose seed was also recovered from the sample.

Conclusions
The Bronze Age assemblage from ring ditch 1 and the Romano-British assemblages from various features were all typical of the periods covered. Whilst barley was probably the main crop during the Bronze Age, spelt wheat was the principal crop recovered during most of the Roman period, with some emmer continuing in cultivation for at least the earlier period, and barley being a constant though minor crop. Oats may have come into cultivation in Phases 2d/e, perhaps being grown as a fodder crop, like barley. Oats and barley ('dredge') have also been used to produce malt in the medieval period. Unlike some larger sites, particularly those with military connections, no bread-type wheat was recorded. This could indicate that the settlement was fairly low status.

The Phase 2d drying oven 1 produced evidence for drying spelt wheat and barley, with the suggestion that the oven had sometimes been used to produce malt. The only evidence for other foods was a trace of hazelnut shell from the Bronze Age ring ditch 1; the common mallow from the Phase 2a pit 308 and the Phase 2c posthole 270, and a rose seed from the Phase 2d pit 675.

Human remains by Teresa Gilmore

The human remains consisted of two inhumations and two cremation deposits. In addition, a single isolated heel bone was recovered (Table 6). The two inhumations have been subject to fragmentation. Skeleton 407 (Grave 2; Phase 2d) was the least well preserved, with moderate loss of integral structure and severe loss of cortex. Skeleton 662 (Grave 1; Phase 2d) had the best quality of bone including preservation of the cortex.

Table 5 shows the age, sex and pathological information gained from the skeletal remains. Three adults are represented (one Probable Male, two of unknown sex). Pathological changes could only be noted from one individual (Skeleton 662, Grave 1). No diagnosis of conditions leading to pathological changes was undertaken at this level of analysis.

Cremated bone was weighed and measured from five environmental samples, representing two deposits (Table 7, Cremations 1 and 2). The state of oxidation and hence the quality of cremation varies from white/grey fragments to black/grey fragments.

The remains appear to represent a minimum number of five individuals (two inhumations, two cremations and a single isolated heel bone). The heel bone is of interest as it derives from ring ditch 1 and raises the possibility of a disturbed Early Bronze Age funerary deposit. The only pathology present was

<table>
<thead>
<tr>
<th>Skeleton Number</th>
<th>Phase</th>
<th>Feature</th>
<th>Age</th>
<th>Sex</th>
<th>Preservation</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>699</td>
<td>1</td>
<td>Ring ditch 1</td>
<td>Adult</td>
<td>?</td>
<td><1%</td>
<td>Fragmentary heel bone only from sample <43></td>
</tr>
<tr>
<td>662</td>
<td>2a</td>
<td>Grave 1</td>
<td>Adult</td>
<td>?</td>
<td>30 – 35%</td>
<td>Dental caries in lower PM1. Calculus on buccal and lingual crown surfaces on loose teeth</td>
</tr>
<tr>
<td>407</td>
<td>2d</td>
<td>Grave 2</td>
<td>Young Adult / Adult</td>
<td>M</td>
<td>10 – 15%</td>
<td></td>
</tr>
</tbody>
</table>
The assemblage is characteristically Roman. The most obvious example is a scapula from ditch fill 1011 in trench 1 of Area C which bears butchery marks consistent with processing the joint to produce cured (or salt) beef. Such marks include trimming around the glenoid cavity, removal of the spina, and nick marks along the margo thoracalis. This pattern of butchery has been recorded on scapulae from a number of Roman assemblages (Maltby 1985; 1989) and probably represents brined or cold-smoked joints (Dobney et al 1995; Dobney 2001).

Seventeen horse bones were recovered, mostly as isolated anatomical elements scattered across the site. Loose teeth and pelvises are common and both immature and adult individuals are represented. One of the adult horse bones, a metatarsal from the primary fill of ditch 7 is complete and gave an estimated shoulder height of c. 12 hands (lateral length measurement following Von den Driesch 1976 converted using Kiesewalter’s factors in Von den Driesch and Boessneck 1974).

Sheep/or goat is represented mostly by mandible fragments and loose teeth. Age data based upon tooth eruption and wear suggests that most sheep were culled as adult individuals (age category G following Payne 1973; 1987; 1988). Less common species include pig, dog, chicken, amphibian and...
rodent (vole). All microfauna (i.e. amphibian and rodent) bones were recovered from sample residues and probably represent natural fatalities.

Given the size of the animal bone assemblage no meaningful interpretation can be ascertained, but the overall make-up, nature and character would appear to be typical of occupation of small-scale domestic rural settlement.

DISCUSSION

by Annette Hancocks and Richard Young

Mesolithic

The earliest evidence from the site relates to Mesolithic activity in the form of worked flint recovered as a result of topsoil sieving. The volume of material found, and its location, on a terrace beside a river is suggestive of a short term camp with no evidence for long-term occupation. The Mesolithic activity forms part of a broader pattern of flint debris in the area identified during earlier work in the vicinity (Walker 2000, 236), and the Southern Cotswolds generally (Saville 1984).

3rd millennium BC

Structural evidence dated to the late 3rd millennium BC comprised two ring ditches, one of which (ring ditch 1) is more correctly described as a penannular ditch. These are interpreted here as funerary or ritual monuments rather than roundhouses given that a human heel bone, two sherds of Beaker pottery, a few charred plant remains and a broken leaf-shaped arrowhead were recovered from the infilling of ring ditch 1. The lack of associated domestic activity also supports the funerary interpretation. The position of the ring ditches, on a promontory overlooking a tributary of the river Avon adds further substance to their interpretation. The location is comparable with that of other well-documented barrows (Powesland 2004, 82).

Ring ditch 1 was the more complete of the two identified, with a probable north-east facing entrance and dates to the late 3rd millennium BC. Pennannular ring ditches surrounding round barrows occur mainly in Dorset and Southern Wessex, although a scatter is known elsewhere. However, there is no central grave and associated pit associated with ring ditch 1. The pit is usually deeper than the ditch. The north-east entrance to the mid-summer rising sun may also be significant, and this monument could represent a small Class I single entrance henge. A broadly comparable hengiform ring ditch was found at Shornecote in the Upper Thames Valley. Here a multi-phased penannular ring ditch with north-facing entrance was excavated (Hearne and Adam 1999, fig. 9 and 33). The single entranced henge is similar to a number of hengiform enclosures of Neolithic date found on the gravel terraces of the Thames and Avon valleys (Loveday 1989, 51-85) and similar examples have recently come to light at Barrow Hills, Radley (Barclay and Halpin 1999, 35-43) and Gravelly Guy, Oxon (Lambrick and Allen 2004, 45-51). At Barrow Hills, a continuous hengiform ring ditch 611 had an external diameter of 6.5m and two samples of modified antler bone produced radiocarbon dates of 2900-2200 cal. BC and 2600-2000 cal. BC respectively and were found in association with plain grooved ware, struck flint of Later Neolithic character and a fragment of Group IV stone axe. A subsequent cremation was radiocarbon dated to 2040-1640 cal. BC. The Gravelly Guy ring ditch was 10m in diameter with a narrow north-west facing causeway, marginally smaller than the Showell Farm example, but Late Neolithic/Early Bronze Age pottery, struck flint and charcoal were recovered. The latter was radiocarbon dated to 1870-1520 cal. BC.

Although poorly preserved, ring ditch 2, at Showell Farm, is best considered to be the quarry ditch surrounding a small round barrow. Such monuments are typical of the southern Cotswolds and this example may be part of a small cemetery (See figure 2; Darvill 1987, 95-9).

The lack of internal features within the ring ditches is likely a result of truncation by modern ploughing. Radiocarbon dating confirms the late third millennium date of ring ditch 1, a date supported by the recovery of Beaker pottery.

The funerary monument interpretation is somewhat tenuously supported by a single aerial photograph taken in February 1949 which suggests that the excavated ring ditches possibly form part of a barrow cemetery (RAF/541/222/4072; Fig. 2). If the anomalies on the aerial photographs have been interpreted correctly further ring ditches should have been observed during the evaluation (trench 12) and throughout Area B. The absence of these features might be explained as a consequence of severe truncation on this part of the site over the last fifty-five years by modern ploughing, but the failure of the excavated ring ditch to show as a cropmark on the photograph may cast some doubt on the validity of the interpretation. It may also be a result...
of localised geological conditions, Kellaways clay not being conducive to the production of cropmarks. It is pertinent to remember that the identification of barrows, whether as earthworks or ring ditches, is always slightly hazardous. Darvill and Grinsell (1989, 49) have noted in Gloucestershire, for example, that less than 50% of putative round barrows that have been excavated proved to be genuine barrows, while the figure was less than 20% for ring ditches.

Late Neolithic and Bronze Age settlement has previously been suggested both to the north and the west of Showell Farm. Evaluation at Showell Nurseries revealed pits, postholes, gullies and ditches dating to this period (OAU 1991, Anon 1993, 159), while investigations along the Chippenham bypass noted a concentration of flint of the same date and sherds of Bronze Age pottery (Bateman and Enright 2000, 233-54). These discoveries testify to an increasingly dense pattern of Late Neolithic and Early Bronze Age activity in the Chippenham area.

Iron Age
At Showell Farm there is limited evidence for Iron Age activity with four sherds of pottery recovered in total, although a Middle Iron Age pit and ditch was recorded at nearby Showell Nurseries (OAU 1991). The skeleton in grave 1 was also radiocarbon dated to the Late Iron Age or Early Roman period.

Roman
The Romano-British evidence comprises a series of intercutting fields and trackways that do not respect the earlier ring ditches of Period 1. The latter features must have been ploughed flat by the time the Roman agricultural field system was laid out in Phase 2d. Activity started c. AD 50-100 with no evidence for continuity from the late pre-Roman Iron Age (in contrast to the Upper Thames Valley). The site was abandoned by the early 3rd century as there is an absence of later pottery, although a 4th-century coin was recovered from the topsoil. The low status of the ceramic assemblage is demonstrated by the small amounts of amphorae and continental fineware imports (McCloy above). This is consistent with rural sites in the region (Willis 1998). The majority of the ceramics, two tegula and small finds evidence were recovered from ditch 7. This concentration of domestic waste may imply that the main occupation area was centred a short distance to the north-west of this feature.

The results suggest that the Romano-British activity represents a small-scale farmed landscape with settlement foci to the north-west of the excavated Roman field system. The system appears to form part of an early Roman managed agricultural landscape of fields, paddocks, enclosures and droveways relating to a mixed agricultural regime incorporating stock management, with the occasional outlying feature such as the drying oven. Most drying ovens are known on or adjacent to villa sites, mainly in the 4th century. However, more are known in lesser rural settlements during the earlier Roman period. The T-shaped form of the Showell Farm drying oven is typically 2nd century in date and typical too of the form of oven previously recorded in this region. A close parallel is the drying oven from Woodcuts 4 (Dorset), where the main flue was c. 2.50m, with a short cross flue with rectangular ends (Morris 1979, 159).

The charred plant remains recovered from the oven are indicative of the processing of spelt wheat. This form of drying oven is seen to be multi-functional, both in the roasting of germinated grains for the production of malt and the parching and drying of grain in preparation for consumption and storage. T-shaped drying ovens are common in Wiltshire at both villas and farmsteads (Walters 2001, 133-5). Although charring is clearly a very biased form of preservation, the diet at Showell Farm appears to have been fairly limited and rural in nature. No evidence for bread wheat, imported fruits and spices, or orchard crops was found. The limited animal bone assemblage comprised cattle, sheep and horse and adds little to our knowledge of economy or diet.

The crouched inhumation was the principal (archaeologically visible) burial rite in the pre-conquest period in Wiltshire and this pattern continues, with some modifications into the Roman period (Whimster 1981, 195 and Philpott 1991, 6). This fits in well with the radiocarbon date obtained on the skeleton from grave 1 at Showell Farm, although rare extended inhumations have been found in pre-conquest or early post-conquest contexts (ibid, 53). The two cremations identified (C1 and C2) conform to the change in burial practices after the Roman conquest in AD 43 and would appear to be classified as unenclosed due to the lack of both a durable cinerary container and grave furniture, although any organic container may have subsequently perished (ibid, 45). Cremations are known in Wiltshire for this period (ibid, 55.) The dispersed nature of the burials and their association with the trackways and ditches at the edge of Romano-British activity seems to represent a more
Informal pattern of burial commonly identified at the fringes of Romano-British rural settlements (Pearce 1999, 151).

What has not been discovered is the associated agricultural buildings and possible villa around which this agricultural landscape was formed. A few tantalising glimpses suggest that a villa-type building might lie in close proximity, with a small amount of tegula and box flue tile and small-scale smithing debris recovered. Artefacts suggest that use of this agricultural landscape was restricted to the 1st and 2nd century AD. It is possible that the fields were abandoned due to a major re-organisation of the agricultural landscape associated with the rise of villa estates, as may have occurred at the villa near Malmesbury (Hart et al 2005), but if this was the case at Showell Farm the villa house did not lie sufficiently close to the excavated area for later Roman material to be spread across it. It seems likely that the settlement focus lay to the north-west of the field system and may even have been destroyed by the construction of the railway in the 19th century. Previously unknown Romano-British field systems in the area around Chippenham have come to light during development works over the last few years (Bateman 2000, 90-104). There is increasing evidence for Romano-British agricultural activity in the North Wiltshire clay vale and Chippenham areas, but to date no villas and farms have been excavated.

Acknowledgements

We should like to thank Mark Stanley-Smith of Nicholson Estates and Roy Canham, Wiltshire County Council Archaeologist for their assistance during the course of this project. The fieldwork was directed by Alan Thomas with the assistance of Jo Williams and Kate Cullen. The fieldwork was managed by Neil Holbrook and Dawn Enright, with post-excavation managed by Annette Hancocks. Neil Holbrook edited and commented on this report. The discussion was greatly enhanced by the comments of Professor Tim Darvill and Dr Joshua Pollard. The illustrations are by Lorna Gray, Peter Moore and Bryony Ryder. The site archive will be deposited with Chippenham Museum.

Bibliography

ANON, 1993. Excavation and fieldwork in Wiltshire: Chippenham. *WANHM* 86, 159-60

BATEMAN, C. 2000. Excavations along the Littleton Drew to Chippenham Gas Pipeline. *WANHM* 93, 90-104

BATEMAN, C. and ENRIGHT, D. 2000. Excavations of Bronze Age and Romano-British sites along the Chippenham Western Bypass A4 to A350 link. *WANHM* 93, 233-7

BRONK RAMSEY, C., 2003, *OxCal Program v3.9*

CAT (Cotswold Archaeological Trust) 1999b Showell Farm, Chippenham, Wiltshire: *Archaeological Excavation, Interim Report*. Client Report No. 991103

CAT (Cotswold Archaeological Trust) 1999c, *Showell Farm, Chippenham, Wiltshire: Archaeological Evaluation (Area C)*. Client Report No. 991094

CLIFFORD, E., 1961, *Bagendon, a Belgic Oppidum*. Cambridge: W. Heffer and Sons Ltd

DARLING, M.J., 1977, ‘Pottery in Early Military sites in Western Britain’ in J. Dare and K. Green (eds), *Pottery studies form Britain and beyond*, British Archaeological Review Supplementary Series 30, 57-99

JACKSON, R. 1985. Cosmetic sets from Late Iron Age and Roman Britain *Britannia* 16, 165-192

TIMBY, J. 2000. ‘Pottery’ in C.Bateman and D.Enright, Excavations of Romano-British sites along the Chippenham Western Bypass A4 to A350 Link WANHM 93, 236
VAN DER VEE N, M., 1989 Charred Grain Assemblages from Romano-Period Corn Driers in Britain. Archaeological Journal 146, 302-19
WALKER, G. 2000. ‘Worked Flint’ in C.Bateman and D.Enright, Excavations of Romano-British sites along the Chippenham Western Bypass A4 to A350 Link WANHM 93, 236